304 research outputs found

    Graphic Warning Labels Elicit Affective and Thoughtful Responses from Smokers: Results of a Randomized Clinical Trial

    Get PDF
    Objective Observational research suggests that placing graphic images on cigarette warning labels can reduce smoking rates, but field studies lack experimental control. Our primary objective was to determine the psychological processes set in motion by naturalistic exposure to graphic vs. text-only warnings in a randomized clinical trial involving exposure to modified cigarette packs over a 4-week period. Theories of graphic-warning impact were tested by examining affect toward smoking, credibility of warning information, risk perceptions, quit intentions, warning label memory, and smoking risk knowledge. Methods Adults who smoked between 5 and 40 cigarettes daily (N = 293; mean age = 33.7), did not have a contra-indicated medical condition, and did not intend to quit were recruited from Philadelphia, PA and Columbus, OH. Smokers were randomly assigned to receive their own brand of cigarettes for four weeks in one of three warning conditions: text only, graphic images plus text, or graphic images with elaborated text. Results Data from 244 participants who completed the trial were analyzed in structural-equation models. The presence of graphic images (compared to text-only) caused more negative affect toward smoking, a process that indirectly influenced risk perceptions and quit intentions (e.g., image-\u3enegative affect-\u3erisk perception-\u3equit intention). Negative affect from graphic images also enhanced warning credibility including through increased scrutiny of the warnings, a process that also indirectly affected risk perceptions and quit intentions (e.g., image-\u3enegative affect-\u3erisk scrutiny-\u3ewarning credibility-\u3erisk perception-\u3equit intention). Unexpectedly, elaborated text reduced warning credibility. Finally, graphic warnings increased warning-information recall and indirectly increased smoking-risk knowledge at the end of the trial and one month later. Conclusions In the first naturalistic clinical trial conducted, graphic warning labels are more effective than text-only warnings in encouraging smokers to consider quitting and in educating them about smoking’s risks. Negative affective reactions to smoking, thinking about risks, and perceptions of credibility are mediators of their impact

    Outcomes of patients with atypical haemolytic uraemic syndrome with native and transplanted kidneys treated with eculizumab: a pooled post hoc analysis

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) often leads to end-stage renal disease (ESRD) and kidney transplantation; graft loss rates are high due to disease recurrence. A post hoc analysis of four prospective clinical trials in aHUS was performed to evaluate eculizumab, a terminal complement inhibitor, in patients with native or transplanted kidneys. The trials included 26-week treatment and extension periods. Dialysis, transplant, and graft loss were evaluated. Study endpoints included complete thrombotic microangiopathy (TMA) response, TMA event-free status, hematologic and renal parameters, and adverse events. Of 100 patients, 74 had native kidneys and 26 in the transplant subgroup had a collective history of 38 grafts. No patients lost grafts and only one with preexisting ESRD received a transplant on treatment. Efficacy endpoints were achieved similarly in both subgroups. After 26 weeks, mean absolute estimated glomerular filtration rate increased from baseline to 61 and 37 mL/min/1.73 m2 in native (n=71; P<0.0001) and transplanted kidney (n=25; P=0.0092) subgroups. Two patients (one/subgroup) developed meningococcal infections; both recovered, one continued therapy. Eculizumab was well tolerated. Eculizumab improved hematologic and renal outcomes in both subgroups. In patients with histories of multiple graft losses, eculizumab protected kidney function. (ClinicalTrials. gov numbers : NCT00844545, NCT00844844, NCT00838513, NCT00844428, NCT01193348, and NCT01194973) This article is protected by copyright. All rights reserved

    ALS2 mutations: Juvenile amyotrophic lateral sclerosis and generalized dystonia.

    Get PDF
    To determine the genetic etiology in 2 consanguineous families who presented a novel phenotype of autosomal recessive juvenile amyotrophic lateral sclerosis associated with generalized dystonia

    Transcranial ultrasound stimulation to human middle temporal complex improves visual motion detection and modulates electrophysiological responses

    Get PDF
    Background Transcranial ultrasound stimulation (TUS) holds promise as a novel technology for non-invasive neuromodulation, with greater spatial precision than other available methods and the ability to target deep brain structures. However, its safety and efficacy for behavioural and electrophysiological modulation remains controversial and it is not yet clear whether it can be used to manipulate the neural mechanisms supporting higher cognitive function in humans. Moreover, concerns have been raised about a potential TUS-induced auditory confound. Objectives We aimed to investigate whether TUS can be used to modulate higher-order visual function in humans in an anatomically-specific way whilst controlling for auditory confounds. Methods We used participant-specific skull maps, functional localisation of brain targets, acoustic modelling and neuronavigation to guide TUS delivery to human visual motion processing cortex (hMT+) whilst participants performed a visual motion detection task. We compared the effects of hMT + stimulation with sham and control site stimulation and examined EEG data for modulation of task-specific event-related potentials. An auditory mask was applied which prevented participants from distinguishing between stimulation and sham trials. Results Compared with sham and control site stimulation, TUS to hMT + improved accuracy and reduced response times of visual motion detection. TUS also led to modulation of the task-specific event-related EEG potential. The amplitude of this modulation correlated with the performance benefit induced by TUS. No pathological changes were observed comparing structural MRI obtained before and after stimulation. Conclusions The results demonstrate for the first time the precision, efficacy and safety of TUS for stimulation of higher-order cortex and cognitive function in humans whilst controlling for auditory confounds
    corecore