53 research outputs found

    Computação da Seleção Genômica Ampla (GWS).

    Get PDF
    Métodos para GWS; Teoria dos métodos de regressão; Computação do método Random (Ridge) Regression BLUP (RR-BLUP/GWS); Fenótipos corrigidos; Frequências alélicas, variância dos marcadores e herdabilidade; Marcadores codominantes (SNP) ? Modelo genotípico; Marcadores dominantes (DArT) - Modelo genotípico; Marcadores codominantes (SNP) ? Modelo gamético ou alélico; Número de marcadores com efeitos significativos; Populações de estimação, validação e seleção; População de validação e Jacknife; Correlação e regressão entre valores genéticos preditos e fenótipos na população de validação; Análise de associação na GWAS; Software Selegen Genômica: Random (Ridge) Regression BLUP: RR-BLUP/GWS; Exemplo aplicado ao melhoramento do eucalipto.bitstream/item/31426/1/Doc210.pd

    Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints

    Get PDF
    Undomesticated wild species, crop wild relatives, and landraces represent sources of variation for wheat improvement to address challenges from climate change and the growing human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis. Using DArTseqTM technology, we identify more than 300,000 high-quality SNPs and SilicoDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes. The analysis reveals landraces with unexplored diversity and genetic footprints defined by regions under selection. This provides fertile ground to develop wheat varieties of the future by exploring specific gene or chromosome regions and identifying germplasm conserving allelic diversity missing in current breeding programs

    Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector.

    Get PDF
    Neutron peripheral contamination in patients undergoing high-energy photon radiotherapy is considered as a risk factor for secondary cancer induction. Organ-specific neutron-equivalent dose estimation is therefore essential for a reasonable assessment of these associated risks. This work aimed to develop a method to estimate neutron-equivalent doses in multiple organs of radiotherapy patients. The method involved the convolution, at 16 reference points in an anthropomorphic phantom, of the normalized Monte Carlo neutron fluence energy spectra with the kerma and energy-dependent radiation weighting factor. This was then scaled with the total neutron fluence measured with passive detectors, at the same reference points, in order to obtain the equivalent doses in organs. The latter were correlated with the readings of a neutron digital detector located inside the treatment room during phantom irradiation. This digital detector, designed and developed by our group, integrates the thermal neutron fluence. The correlation model, applied to the digital detector readings during patient irradiation, enables the online estimation of neutron-equivalent doses in organs. The model takes into account the specific irradiation site, the field parameters (energy, field size, angle incidence, etc) and the installation (linac and bunker geometry). This method, which is suitable for routine clinical use, will help to systematically generate the dosimetric data essential for the improvement of current risk-estimation models
    corecore