3,538 research outputs found

    Structure and expression of nuclear oncogenes in multi-stage thyroid tumorigenesis.

    Get PDF
    We have investigated the possibility that structural alterations of the 'nuclear' oncogene family (c-myc, N-myc, L-myc, fos, myb and p53) leading to aberrant expression might, as in several other tumour types, play a role in the multi-stage development of tumorigenesis in the human thyroid follicular cell. Direct analysis of expression by slot and Northern blot RNA hybridisation showed that normal thyroid expresses surprisingly high levels of fos, and to a lesser extent c-myc, c-myc expression was markedly increased in all tumours, both benign and malignant, but no increase was seen in any other nuclear oncogene. fos expression was reduced specifically in one type of malignant tumour-follicular carcinoma-in inverse correlation with differentiation. Southern blot analysis showed no evidence of rearrangement or amplification of c-myc, or of any other 'nuclear' oncogene in any thyroid tumour. We conclude that there is no evidence that a primary abnormality of these genes plays a role in thyroid follicular cell tumorigenesis and suggest that the observed changes in expression can be adequately explained as secondary consequences of the tumour phenotype

    Papillary and follicular thyroid carcinomas show a different pattern of ras oncogene mutation.

    Get PDF
    Papillary and follicular thyroid carcinomas show a different pattern of ras oncogene mutation

    A model for the generic alpha relaxation of viscous liquids

    Get PDF
    Dielectric measurements on molecular liquids just above the glass transition indicate that alpha relaxation is characterized by a generic high-frequency loss varying as ω1/2\omega^{-1/2}, whereas deviations from this come from one or more low-lying beta processes [Olsen et al, Phys. Rev. Lett. {\bf 86} (2001) 1271]. Assuming that long-wavelength fluctuations dominate the dynamics, a model for the dielectric alpha relaxation based on the simplest coupling between the density and dipole density fields is proposed here. The model, which is solved in second order perturbation theory in the Gaussian approximation, reproduces the generic features of alpha relaxation

    Ha-ras restriction fragment length polymorphisms in colorectal cancer.

    Get PDF
    The possibility of an association between restriction fragment length polymorphisms (RFLPs) at the Ha-ras gene locus and susceptibility to develop colorectal cancer has been investigated. Leucocyte DNA from 46 carcinoma patients and 49 controls was analysed by Southern blotting to determine the size distribution of restriction fragments containing the variable tandem repeat 3' to the Ha-ras gene. Four predominant allelic fragments were found in both groups (in AvaII digests having sizes of 1.55, 2.0, 2.65 and 3.15 kilobases [kb]), together with a variety of 'rare' alleles (with individual frequencies less than 5%). The overall prevalence of rare alleles was not significantly different between cancer and control groups. The distribution of the common alleles, however, differed significantly. The combined frequency of the two larger alleles (a3 and a4) was approximately twice as high in the cancer group (34%) as in controls (18%) (P less than 0.025), which was reflected in a highly significant increase in the proportion of individuals carrying an a3 or a4 allele

    Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background

    Get PDF
    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability

    The GBT Project

    Get PDF
    The GigaBit Transceiver (GBT) architecture and transmission protocol has been proposed for data transmission in the physics experiments of the future upgrade of the LHC accelerator, the SLHC. Due to the high beam luminosity planned for the SLHC, the experiments will require high data rate links and electronic components capable of sustaining high radiation doses. The GBT ASICs address this issue implementing a radiation-hard bi-directional 4.8 Gb/s optical fibre link between the counting room and the experiments. The paper describes in detail the GBT-SERDES architecture and presents an overview of the various components that constitute the GBT chipset

    Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity

    Get PDF
    Volatile esters, a major class of compounds contributing to the aroma of many fruit, are synthesized by alcohol acyl-transferases (AAT). We demonstrate here that, in Charentais melon (Cucumis melo var. cantalupensis), AAT are encoded by a gene family of at least four members with amino acid identity ranging from 84% (Cm-AAT1/Cm-AAT2) and 58% (Cm-AAT1/Cm-AAT3) to only 22% (Cm-AAT1/Cm-AAT4). All encoded proteins, except Cm-AAT2, were enzymatically active upon expression in yeast and show differential substrate preferences. Cm-AAT1 protein produces a wide range of short and long-chain acyl esters but has strong preference for the formation of E-2-hexenyl acetate and hexyl hexanoate. Cm-AAT3 also accepts a wide range of substrates but with very strong preference for producing benzyl acetate. Cm-AAT4 is almost exclusively devoted to the formation of acetates, with strong preference for cinnamoyl acetate. Site directed mutagenesis demonstrated that the failure of Cm-AAT2 to produce volatile esters is related to the presence of a 268-alanine residue instead of threonine as in all active AAT proteins. Mutating 268-A into 268-T of Cm-AAT2 restored enzyme activity, while mutating 268-T into 268-A abolished activity of Cm-AAT1. Activities of all three proteins measured with the prefered substrates sharply increase during fruit ripening. The expression of all Cm-AAT genes is up-regulated during ripening and inhibited in antisense ACC oxidase melons and in fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. The data presented in this work suggest that the multiplicity of AAT genes accounts for the great diversity of esters formed in melon

    Time-temperature superposition in viscous liquids

    Get PDF
    Dielectric relaxation measurements on supercooled triphenyl phosphite show that at low temperatures time-temperature superposition (TTS) is accurately obeyed for the primary (alpha) relaxation process. Measurements on 6 other molecular liquids close to the calorimetric glass transition indicate that TTS is linked to an ω1/2\omega^{-1/2} high-frequency decay of the alpha loss, while the loss peak width is nonuniversal.Comment: 4 page

    Suppression of the intrinsic apoptosis pathway by sinaptic activity

    Get PDF
    Synaptic activity promotes resistance to diverse apoptotic insults, the mechanism behind which is incompletely understood. We show here that a coordinated downregulation of core components of the intrinsic apoptosis pathway by neuronal activity forms a key part of the underlying mechanism. Activity-dependent protection against apoptotic insults is associated with inhibition of cytochrome c release in most but not all neurons, indicative of anti-apoptotic signaling both upstream and downstream of this step. We find that enhanced firing activity suppresses expression of the proapoptotic BH3-only member gene Puma in a NMDA receptor-dependent, p53-independent manner. Puma expression is sufficient to induce cytochrome c loss and neuronal apoptosis. Puma deficiency protects neurons against apoptosis and also occludes the protective effect of synaptic activity, while blockade of physiological NMDA receptor activity in the developing mouse brain induces neuronal apoptosis that is preceded by upregulation of Puma. However, enhanced activity can also confer resistance to Puma-induced apoptosis, acting downstream of cytochrome c release. This mechanism is mediated by transcriptional suppression of apoptosome components Apaf-1 and procaspase-9, and limiting caspase-9 activity, since overexpression of procaspase-9 accelerates the rate of apoptosis in active neurons back to control levels. Synaptic activity does not exert further significant anti-apoptotic effects downstream of caspase-9 activation, since an inducible form of caspase-9 overrides the protective effect of synaptic activity, despite activity-induced transcriptional suppression of caspase-3. Thus, suppression of apoptotic gene expression may synergize with other activity-dependent events such as enhancement of antioxidant defenses to promote neuronal survival
    corecore