648 research outputs found
Ab initio study of a mechanically gated molecule: From weak to strong correlation
The electronic spectrum of a chemically contacted molecule in the junction of
a scanning tunneling microscope can be modified by tip retraction. We analyze
this effect by a combination of density functional, many-body perturbation and
numerical renormalization group theory, taking into account both the
non-locality and the dynamics of electronic correlation. Our findings, in
particular the evolution from a broad quasiparticle resonance below to a narrow
Kondo resonance at the Fermi energy, correspond to the experimental
observations.Comment: 4 pages, 3 figure
Imaging Pauli repulsion in scanning tunneling microscopy
A scanning tunneling microscope (STM) has been equipped with a nanoscale
force sensor and signal transducer composed of a single D2 molecule that is
confined in the STM junction. The uncalibrated sensor is used to obtain
ultra-high geometric image resolution of a complex organic molecule adsorbed on
a noble metal surface. By means of conductance-distance spectroscopy and
corresponding density functional calculations the mechanism of the
sensor/transducer is identified. It probes the short-range Pauli repulsion and
converts this signal into variations of the junction conductance.Comment: 4 pages, 4 figures, accepted to Phys. Rev. Let
Electrical transport through a mechanically gated molecular wire
A surface-adsorbed molecule is contacted with the tip of a scanning tunneling
microscope (STM) at a pre-defined atom. On tip retraction, the molecule is
peeled off the surface. During this experiment, a two-dimensional differential
conductance map is measured on the plane spanned by the bias voltage and the
tip-surface distance. The conductance map demonstrates that tip retraction
leads to mechanical gating of the molecular wire in the STM junction. The
experiments are compared with a detailed ab initio simulation. We find that
density functional theory (DFT) in the local density approximation (LDA)
describes the tip-molecule contact formation and the geometry of the molecular
junction throughout the peeling process with predictive power. However, a
DFT-LDA-based transport simulation following the non-equilibrium Green's
functions (NEGF) formalism fails to describe the behavior of the differential
conductance as found in experiment. Further analysis reveals that this failure
is due to the mean-field description of electron correlation in the local
density approximation. The results presented here are expected to be of general
validity and show that, for a wide range of common wire configurations,
simulations which go beyond the mean-field level are required to accurately
describe current conduction through molecules. Finally, the results of the
present study illustrate that well-controlled experiments and concurrent ab
initio transport simulations that systematically sample a large configuration
space of molecule-electrode couplings allow the unambiguous identification of
correlation signatures in experiment.Comment: 31 pages, 10 figure
Scanning Quantum Dot Microscopy
Interactions between atomic and molecular objects are to a large extent
defined by the nanoscale electrostatic potentials which these objects produce.
We introduce a scanning probe technique that enables three-dimensional imaging
of local electrostatic potential fields with sub-nanometer resolution.
Registering single electron charging events of a molecular quantum dot attached
to the tip of a (qPlus tuning fork) atomic force microscope operated at 5 K, we
quantitatively measure the quadrupole field of a single molecule and the dipole
field of a single metal adatom, both adsorbed on a clean metal surface. Because
of its high sensitivity, the technique can record electrostatic potentials at
large distances from their sources, which above all will help to image complex
samples with increased surface roughness.Comment: main text: 5 pages, 4 figures, supplementary information file: 4
pages, 2 figure
Quasiparticle energies for large molecules: a tight-binding GW approach
We present a tight-binding based GW approach for the calculation of
quasiparticle energy levels in confined systems such as molecules. Key
quantities in the GW formalism like the microscopic dielectric function or the
screened Coulomb interaction are expressed in a minimal basis of spherically
averaged atomic orbitals. All necessary integrals are either precalculated or
approximated without resorting to empirical data. The method is validated
against first principles results for benzene and anthracene, where good
agreement is found for levels close to the frontier orbitals. Further, the size
dependence of the quasiparticle gap is studied for conformers of the polyacenes
() up to n = 30.Comment: 10 pages, 5 eps figures submitted to Phys. Rev.
Nonlocal vortex motion in mesoscopic amorphous Nb0.7Ge0.3 structures
We study nonlocal vortex transport in mesoscopic amorphous Nb0.7Ge0.3
samples. A dc current I is passed through a wire connected via a perpendicular
channel, of a length L= 2-5 um, with a pair of voltage probes where a nonlocal
response Vnl ~ I is measured. The maximum of Rnl=Vnl/I for a given temperature
occurs at an L-independent magnetic field and is proportional to 1/L. The
results are interpreted in terms of the dissipative vortex motion along the
channel driven by a remote current, and can be understood in terms of a simple
model.Comment: 4 pages, 3 figure
Doppler Shift in Andreev Reflection from a Moving Superconducting Condensate in Nb/InAs Josephson Junctions
We study narrow ballistic Josephson weak links in a InAs quantum wells
contacted by Nb electrodes and find a dramatic magnetic-field suppression of
the Andreev reflection amplitude, which occurs even for in-plane field
orientation with essentially no magnetic flux through the junction. Our
observations demonstrate the presence of a Doppler shift in the energy of the
Andreev levels, which results from diamagnetic screening currents in the hybrid
Nb/InAs-banks. The data for conductance, excess and critical currents can be
consistently explained in terms of the sample geometry and the McMillan energy,
characterizing the transparency of the Nb/InAs-interface.Comment: 4 pages, 5 figures, title modifie
Ab-initio calculation of optical absorption in semiconductors: A density-matrix description
We show how to describe Coulomb renormalization effects and dielectric
screening in semiconductors and semiconductor nanostructures within a
first-principles density-matrix description. Those dynamic variables and
approximation schemes which are required for a proper description of dielectric
screening are identified. It is shown that within the random-phase
approximation the direct Coulomb interactions become screened, with static
screening being a good approximation, whereas the electron-hole exchange
interactions remain unscreened. Differences and similarities of our results
with those obtained from a corresponding GW approximation and Bethe-Salpeter
equation Green's function analysis are discussed.Comment: 10 pages, to be published in Physical Review
Dynamical bi-stability of single-molecule junctions: A combined experimental/theoretical study of PTCDA on Ag(111)
The dynamics of a molecular junction consisting of a PTCDA molecule between
the tip of a scanning tunneling microscope and a Ag(111) surface have been
investigated experimentally and theoretically. Repeated switching of a PTCDA
molecule between two conductance states is studied by low-temperature scanning
tunneling microscopy for the first time, and is found to be dependent on the
tip-substrate distance and the applied bias. Using a minimal model Hamiltonian
approach combined with density-functional calculations, the switching is shown
to be related to the scattering of electrons tunneling through the junction,
which progressively excite the relevant chemical bond. Depending on the
direction in which the molecule switches, different molecular orbitals are
shown to dominate the transport and thus the vibrational heating process. This
in turn can dramatically affect the switching rate, leading to non-monotonic
behavior with respect to bias under certain conditions. In this work, rather
than simply assuming a constant density of states as in previous works, it was
modeled by Lorentzians. This allows for the successful description of this
non-monotonic behavior of the switching rate, thus demonstrating the importance
of modeling the density of states realistically.Comment: 20 pages, 6 figures, 1 tabl
Predicting Fluid Intelligence of Children using T1-weighted MR Images and a StackNet
In this work, we utilize T1-weighted MR images and StackNet to predict fluid
intelligence in adolescents. Our framework includes feature extraction, feature
normalization, feature denoising, feature selection, training a StackNet, and
predicting fluid intelligence. The extracted feature is the distribution of
different brain tissues in different brain parcellation regions. The proposed
StackNet consists of three layers and 11 models. Each layer uses the
predictions from all previous layers including the input layer. The proposed
StackNet is tested on a public benchmark Adolescent Brain Cognitive Development
Neurocognitive Prediction Challenge 2019 and achieves a mean squared error of
82.42 on the combined training and validation set with 10-fold
cross-validation. In addition, the proposed StackNet also achieves a mean
squared error of 94.25 on the testing data. The source code is available on
GitHub.Comment: 8 pages, 2 figures, 3 tables, Accepted by MICCAI ABCD-NP Challenge
2019; Added ND
- …