101 research outputs found

    The effect of age, anatomical site and bone structure on osteogenesis in New Zealand White rabbit

    Get PDF
    Among animal models, rabbits are widely used in medical research, as they fill the gap between smaller models, commonly employed in basic science, and larger ones, which are better suited for preclinical trials. Given their rapid growth, rabbits provide a valuable system for the evaluation of bone implants for tissue regeneration. By means of a histomorphometric analysis, here we quantified the mineral apposition rates (MARs) in osteonic, periosteum and endosteum osteogenic fronts, of skeletal elements within femur, tibia, radius, ulna, frontal and parietal bones in New Zealand White rabbits aged 6, 7 and 8 months. Our hypothesis is that the MAR varies according to the skeletal maturity of the animal, and also within the skeletal elements and the osteogenic fronts considered. In the present study we show that the MAR in both femur and tibia is significantly higher than in ulna and radius. We also demonstrate that the MAR in parietal bones is significantly higher compared to the MAR of both frontal and forelimb bones. Contrary to what was expected, the MARs of all the skeletal elements considered were not decreased following full skeletal maturity. Finally, the MAR of the osteonic-osteogenic front is the lowest in all of the skeletal elements considered. In conclusion, these results provide new important insights for the evaluation of bone implants, casting a light on the role of both age and osteogenic fronts on the bone MAR, and providing valuable information on the physiological bone turnover in New Zealand White rabbits

    The normal and fibrotic mouse lung classified by spatial proteomic analysis

    Get PDF
    Single cell classification is elucidating homeostasis and pathology in tissues and whole organs. We applied in situ spatial proteomics by multiplex antibody staining to routinely processed mouse lung, healthy and during a fibrosis model. With a limited validated antibody panel (24) we classify the normal constituents (alveolar type I and II, bronchial epithelia, endothelial, muscular, stromal and hematopoietic cells) and by quantitative measurements, we show the progress of lung fibrosis over a 4 weeks course, the changing landscape and the cell-specific quantitative variation of a multidrug transporter. An early decline in AT2 alveolar cells and a progressive increase in stromal cells seems at the core of the fibrotic process

    Proteomic Fingerprint of Lung Fibrosis Progression and Response to Therapy in Bleomycin-Induced Mouse Model

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by the aberrant accumulation of extracellular matrix in the lungs. nintedanib is one of the two FDA-approved drugs for IPF treatment; however, the exact pathophysiological mechanisms of fibrosis progression and response to therapy are still poorly understood. In this work, the molecular fingerprint of fibrosis progression and response to nintedanib treatment have been investigated by mass spectrometry-based bottom-up proteomics in paraffin-embedded lung tissues from bleomycin-induced (BLM) pulmonary fibrosis mice. Our proteomics results unveiled that (i) samples clustered depending on the tissue fibrotic grade (mild, moderate, and severe) and not on the time course after BLM treatment; (ii) the dysregulation of different pathways involved in fibrosis progression such as the complement coagulation cascades, advanced glycation end products (AGEs) and their receptors (RAGEs) signaling, the extracellular matrix-receptor interaction, the regulation of actin cytoskeleton, and ribosomes; (iii) Coronin 1A (Coro1a) as the protein with the highest correlation when evaluating the progression of fibrosis, with an increased expression from mild to severe fibrosis; and (iv) a total of 10 differentially expressed proteins (padj-value ≤ 0.05 and Fold change ≤-1.5 or ≥1.5), whose abundance varied in the base of the severity of fibrosis (mild and moderate), were modulated by the antifibrotic treatment with nintedanib, reverting their trend. Notably, nintedanib significantly restored lactate dehydrogenase B (Ldhb) expression but not lactate dehydrogenase A (Ldha). Notwithstanding the need for further investigations to validate the roles of both Coro1a and Ldhb, our findings provide an extensive proteomic characterization with a strong relationship with histomorphometric measurements. These results unveil some biological processes in pulmonary fibrosis and drug-mediated fibrosis therapy

    Integrating demand uncertainty in inventory routing for recyclable waste collection

    Get PDF
    Osteoblast cell adhesion to the extracellular matrix is established through two main pathways: one is mediated by the binding between integrin and a minimal adhesion sequence (RGD) on the extracellular protein, the other is based on the interactions between transmembrane proteoglycans and heparin-binding sequences found in many matrix proteins. The aim of this study is the evaluation in an in vivo endosseous implant model of the early osteogenic response of the peri-implant bone to a biomimetic titanium surface functionalized with the retro-inverso 2DHVP peptide, an analogue of Vitronectin heparin binding site. The experimental plan is based on a bilateral study design of Control and 2DHVP implants inserted respectively in the right and left femur distal metaphysis of adult male Wistar rats (n=16) weighing about 300 gr and evaluated after 15 days. Fluorochromic bone vital markers, were given at specific time frame, in order to monitor the dynamic of new bone deposition. The effect inducted by the peptidomimetic coating on the surrounding bone were qualitatively and quantitatively evaluated by means of static and dynamic histomorphometric analyses performed within three concentric and subsequent circular Regions of Interest (ROI) of equivalent thickness (220 ÎĽm), ROI1 adjacent to the interface, ROI2, the middle, and ROI3 the farthest. The data indicated that these functionalized implants stimulated a higher bone apposition rate (p<0,01) and larger and rapid osteoblast activation in terms of mineralising surface within ROI1 compared to the Control (p<0,01). These higher osteoblast recruitment and activation leads to a greater bone to implant contact reached for DHVP samples (p<0,5). This represents an initial stimulus of the osteogenic activity that might results in a faster and better osteointegration process

    Multitarget CFTR Modulators Endowed with Multiple Beneficial Side Effects for Cystic Fibrosis Patients: Toward a Simplified Therapeutic Approach

    Get PDF
    Cystic fibrosis (CF) is a multiorgan disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR). In addition to respiratory impairment due to mucus accumulation, viruses and bacteria trigger acute pulmonary exacerbations, accelerating disease progression and mortality rate. Treatment complexity increases with patients’ age, and simplifying the therapeutic regimen represents one of the key priorities in CF. We have recently reported the discovery of multitarget compounds able to “kill two birds with one stone” by targeting F508del-CFTR and PI4KIIIβ and thus acting simultaneously as CFTR correctors and broad-spectrum enterovirus (EV) inhibitors. Starting from these preliminary results, we report herein a hit-to-lead optimization and multidimensional structure–activity relationship (SAR) study that led to compound 23a. This compound showed good antiviral and F508del-CFTR correction potency, additivity/synergy with lumacaftor, and a promising in vitro absorption, distribution, metabolism, and excretion (ADME) profile. It was well tolerated in vivo with no sign of acute toxicity and histological alterations in key biodistribution organs

    Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux

    Get PDF
    • …
    corecore