27 research outputs found

    Dielectric control of spin in semiconductor spherical quantum dots

    Get PDF
    The ground state electronic configuration of semiconductor spherical quantum dots populated with different numbers of excess electrons, for different radii and dielectric constants of the embedding medium is calculated and the corresponding phase diagram drawn. To this end, an extension of the spin density functional theory to study systems with variable effective mass and dielectric constant is employed. Our results show that high/low spin configurations can be switched by appropriate changes in the quantum dot embedding environment and suggest the use of the quantum dot spin as a sensor of the dielectric response of medi

    Effect of strain and variable mass on the formation of antibonding hole ground states in InAs quantum dot molecules

    Get PDF
    Using four-band k·p Hamiltonians, we study how biaxial strain and position-dependent effective masses influence hole tunneling in vertically coupled InAs/GaAs quantum dots. Strain reduces the tunneling and hence the critical interdot distance required for the ground state to change from bonding to antibonding. The reduced spin-orbit interaction in the GaAs matrix, which we account for using position-dependent Luttinger parameters, has the opposite effect. This compensation results in the critical distance being little affected. The possibility to induce the bonding-to-antibonding transition using longitudinal magnetic fields is also investigated. Luttinger- Kohn Hamiltonian predicts a magnetic enhancement of the heavy hole-light hole coupling which, in turn, leads to such transition. No such effect is, however, observed in magnetophotoluminescence experiments. An alter- native implementation of the magnetic field in the envelope function Hamiltonian is given which retrieves the experimental behavior

    Band structure engineering via piezoelectric fields in strained anisotropic CdSe/CdS nanocrystals

    Get PDF
    Strain in colloidal heteronanocrystals with non-centrosymmetric lattices presents a unique opportunity for controlling optoelectronic properties and adds a new degree of freedom to existing wavefunction engineering and doping paradigms. We synthesized wurtzite CdSe nanorods embedded in a thick CdS shell, hereby exploiting the large lattice mismatch between the two domains to generate a compressive strain of the CdSe core and a strong piezoelectric potential along its c-axis. Efficient charge separation results in an indirect ground-state transition with a lifetime of several microseconds, almost one order of magnitude longer than any other CdSe/CdS nanocrystal. Higher excited states recombine radiatively in the nanosecond time range, due to increasingly overlapping excited-state orbitals. k˙p calculations confirm the importance of the anisotropic shape and crystal structure in the buildup of the piezoelectric potential. Strain engineering thus presents an efficient approach to highly tunable single- and multiexciton interactions, driven by a dedicated core/shell nanocrystal design.F.R., J.I.C. and J.P. acknowledge financial support from MINECO project CTQ2011-27324 and UJI-Bancaixa P1-1B2011-01. S.B. and F.M. acknowledge support from the Cariplo Foundation (2012-0844). S.B. thanks the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 324603 for financial support (EDONHIST). The present publication is further realized with the support of the Ministero degli Affari Esteri e della Cooperazione Internazionale (IONX-NC4SOL, I.M.). K. Miszta (IIT, Italy) is acknowledged for initial discussions on the RIR samples, and W. Langbein (Cardiff University, UK) for enlightening conversations on strain and the Stark effect in CdSe/CdS superlattices

    Spectral–Spatial Pixel Characterization Using Gabor Filters for Hyperspectral Image Classification

    No full text

    Strain in free standing CdSe/CdS core-shell nanorods

    Get PDF
    The main characteristic strain trends in free-standing II–VI wurtzite semiconductor nanorods coated with a few-monolayers shell are reported. Calculations for different aspect ratios and shell thicknesses show that these are key factors for the strength of strain components that can even change their sign. Strain in core-shell nanorods with few monolayers coating is strong and qualitatively different from that of buried dots. Hexagonal symmetry compared to cubic and isotropic approximations reveals that, with the appropriate parameters, isotropic strain mimics very well the strain distributions of wurtzite core-shell nanorod
    corecore