21,279 research outputs found

    Observability of the neutrino flux from the inner region of the galactic disk

    Get PDF
    The observability of galactic neutrinos in a detector of 10 billion tons of water with an observing time of a few years is explored. Although the atmospheric flux exceeds the galactic flux considerably at energies greater than or equal to 1 TeV, the latter may still provide a marginally observable signal owing to its directionality. Galactic muon neutrinos with energy greater than or equal to 1 TeV will produce a signal approximately 2 sigma above the atmospheric background over a four year period. If electron neutrinos can also be studied with the deep underwater muon and neutrino detector, then galactic electron neutrinos above 1 TeV would give an approximate 4 to 5 sigma signal above the electron neutrino background over a four year integration time

    The Equation of State of Dense Matter : from Nuclear Collisions to Neutron Stars

    Get PDF
    The Equation of State (EoS) of dense matter represents a central issue in the study of compact astrophysical objects and heavy ion reactions at intermediate and relativistic energies. We have derived a nuclear EoS with nucleons and hyperons within the Brueckner-Hartree-Fock approach, and joined it with quark matter EoS. For that, we have employed the MIT bag model, as well as the Nambu--Jona-Lasinio (NJL) and the Color Dielectric (CD) models, and found that the NS maximum masses are not larger than 1.7 solar masses. A comparison with available data supports the idea that dense matter EoS should be soft at low density and quite stiff at high density.Comment: 8 pages, 5 figures, invited talk given at NPA3, Dresden, March 200

    On the Running of the Cosmological Constant in Quantum General Relativity

    Full text link
    We present arguments that show what the running of the cosmological constant means when quantum general relativity is formulated following the prescription developed by Feynman.Comment: 5 page

    Resummed Quantum Gravity

    Get PDF
    We present the current status of the a new approach to quantum general relativity based on the exact resummation of its perturbative series as that series was formulated by Feynman. We show that the resummed theory is UV finite and we present some phenomenological applications as well.Comment: 4 pages, 1 figure; presented at ICHEP0

    On general features of warm dark matter with reduced relativistic gas

    Full text link
    Reduced Relativistic Gas (RRG) is a useful approach to describe the warm dark matter (WDM) or the warmness of baryonic matter in the approximation when the interaction between the particles is irrelevant. The use of Maxwell distribution leads to the complicated equation of state of the J\"{u}ttner model of relativistic ideal gas. The RRG enables one to reproduce the same physical situation but in a much simpler form. For this reason RRG can be a useful tool for the theories with some sort of a "new Physics". On the other hand, even without the qualitatively new physical implementations, the RRG can be useful to describe the general features of WDM in a model-independent way. In this sense one can see, in particular, to which extent the cosmological manifestations of WDM may be dependent on its Particle Physics background. In the present work RRG is used as a complementary approach to derive the main observational exponents for the WDM in a model-independent way. The only assumption concerns a non-negligible velocity vv for dark matter particles which is parameterized by the warmness parameter bb. The relatively high values of bb ( b2≳10−6b^2\gtrsim 10^{-6}) erase the radiation (photons and neutrinos) dominated epoch and cause an early warm matter domination after inflation. Furthermore, RRG approach enables one to quantify the lack of power in linear matter spectrum at small scales and in particular, reproduces the relative transfer function commonly used in context of WDM with accuracy of ≲1%\lesssim 1\%. A warmness with b2≲10−6b^2\lesssim 10^{-6} (equivalent to v≲300km/sv\lesssim 300 km/s) does not alter significantly the CMB power spectrum and is in agreement with the background observational tests.Comment: 15 pages, 8 figures. Essential improvements in style and presentatio
    • …
    corecore