167 research outputs found

    A stacked ensemble learning and non-homogeneous hidden Markov model for daily precipitation downscaling and projection

    Get PDF
    Global circulation models (GCMs) are routinely used to project future climate conditions worldwide, such as temperature and precipitation. However, inputs with a finer resolution are required to drive impact-related models at local scales. The nonhomogeneous hidden Markov model (NHMM) is a widely used algorithm for the precipitation statistical downscaling for GCMs. To improve the accuracy of the traditional NHMM in reproducing spatiotemporal precipitation features of specific geographic sites, especially extreme precipitation, we developed a new precipitation downscaling framework. This hierarchical model includes two levels: (1) establishing an ensemble learning model to predict the occurrence probabilities for different levels of daily precipitation aggregated at multiple sites and (2) constructing a NHMM downscaling scheme of daily amount at the scale of a single rain gauge using the outputs of ensemble learning model as predictors. As the results obtained for the case study in the central-eastern China (CEC), show that our downscaling model is highly efficient and performs better than the NHMM in simulating precipitation variability and extreme precipitation. Finally, our projections indicate that CEC may experience increased precipitation in the future. Compared with around 26 years (1990–2015), the extreme precipitation frequency and amount would significantly increase by 21.9%– 48.1% and 12.3%–38.3%, respectively, by the late century (2075–2100) under the Shared Socioeconomic Pathway 585 climate scenario

    ALART: A novel lidar system for vegetation height retrieval from space

    Get PDF
    We propose a multi-kHz Single-Photon Counting (SPC) space LIDAR, exploiting low energy pulses with high repetition frequency (PRF). The high PRF allows one to overcome the low signal limitations, as many return shots can be collected from nearly the same scattering area. The ALART space instrument exhibits a multi-beam design, providing height retrieval over a wide area and terrain slope measurements. This novel technique, working with low SNRs, allows multiple beam generation with a single laser, limiting mass and power consumption. As the receiver has a certain probability to detect multiple photons from different levels of canopy, a histogram is constructed and used to retrieve the properties of the target tree, by means of a modal decomposition of the reconstructed waveform. A field demonstrator of the ALART space instrument is currently being developed by a European consortium led by cosine | measurement systems and funded by ESA under the TRP program. The demonstrator requirements have been derived to be representative of the target instrument and it will be tested in an equipped tower in woodland areas in the Netherlands. The employed detectors are state-of-the-art CMOS Single-Photon Avalanche Diode (SPAD) matrices with 1024 pixels. Each pixel is independently equipped with an integrated Time-to-Digital Converter (TDC), achieving a timing accuracy that is much lower than the SPAD dead time, resulting in a distance resolution in the centimeter range. The instrument emits nanosecond laser pulses with energy on the order of several J, at a PRF of ~ 10 kHz, and projects on ground a three-beams pattern. An extensive field measurement campaign will validate the employed technologies and algorithms for vegetation height retrieval

    Carfilzomib, cyclophosphamide and dexamethasone for newly diagnosed, high-risk myeloma patients not eligible for transplant: A pooled analysis of two studies

    Get PDF
    Despite remarkable advances in the treatment of multiple myeloma (MM) in the last decades, the prognosis of patients harboring high-risk cytogenetic abnormalities remains dismal as compared to that of standard-risk patients. Proteasome inhibitors have been demonstrated to partially ameliorate the prognosis of high-risk patients. We pooled together data from two phase I/II trials on transplant-ineligible patients with MM receiving upfront carfilzomib cyclophosphamide and dexamethasone followed by carfilzomib maintenance. The aim of this analysis was to compare treatment outcomes in patients with standard-risk versus high-risk cytogenetic abnormalities detected by fluorescence in situ hybridization (FISH) analysis. High risk was defined by the presence of at least one chromosomal abnormality, including t(4;14), del17p and t(14;16). Overall, 94 patients were included in the analysis: 57 (61%) in the standard-risk and 37 (39%) in the high-risk group. Median follow-up was 38 months. In standard-risk versus high-risk patients, we observed similar progression-free survival (PFS) (3-year PFS: 52% vs. 43%, respectively; P=0.50), overall survival (OS) (3-year OS: 78% vs. 73%; P=0.38), and overall response rate (88% vs. 95%; P=0.47), with no statistical differences between the two groups. No difference in terms of PFS was observed between patients with or without del17p. Carfilzomib, used both as induction and maintenance agent for transplant-ineligible newly diagnosed MM patients, mitigated the poor prognosis carried by high-risk cytogenetics and resulted in similar PFS and OS as in standard-risk patients

    Carfilzomib, cyclophosphamide and dexamethasone for newly diagnosed, high-risk myeloma patients not eligible for transplant: A pooled analysis of two studies

    Get PDF
    open20noFunding: The IST-CAR-561 (NCT01857115) study was sponsored by Stichting Hemato-Oncologie voor Volwassenen Nederland (HOVON, the Netherlands), in collaboration with Fondazione Neoplasie Sangue ONLUS (Italy). The IST-CAR-506 (NCT01346787) study was sponsored by the HOVON Foundation and co-sponsored by Fondazione Neoplasie Sangue ONLUS. Both trials were supported by funding from AMGEN (Onyx Pharmaceuticals), which had no role in study design, data collection, data analysis, data interpretation, writing of the report or publication of this article. The corresponding author had full access to all the data in the two studies, and had final responsibility for the decision to prepare and submit this manuscript for publication, together with the other authors.Despite remarkable advances in the treatment of multiple myeloma (MM) in the last decades, the prognosis of patients harboring high-risk cytogenetic abnormalities remains dismal as compared to that of standard-risk patients. Proteasome inhibitors have been demonstrated to partially ameliorate the prognosis of high-risk patients. We pooled together data from two phase I/II trials on transplant-ineligible patients with MM receiving upfront carfilzomib cyclophosphamide and dexamethasone followed by carfilzomib maintenance. The aim of this analysis was to compare treatment outcomes in patients with standard-risk versus high-risk cytogenetic abnormalities detected by fluorescence in situ hybridization (FISH) analysis. High risk was defined by the presence of at least one chromosomal abnormality, including t(4;14), del17p and t(14;16). Overall, 94 patients were included in the analysis: 57 (61%) in the standard-risk and 37 (39%) in the high-risk group. Median follow-up was 38 months. In standard-risk versus high-risk patients, we observed similar progression-free survival (PFS) (3-year PFS: 52% vs. 43%, respectively; P=0.50), overall survival (OS) (3-year OS: 78% vs. 73%; P=0.38), and overall response rate (88% vs. 95%; P=0.47), with no statistical differences between the two groups. No difference in terms of PFS was observed between patients with or without del17p. Carfilzomib, used both as induction and maintenance agent for transplant-ineligible newly diagnosed MM patients, mitigated the poor prognosis carried by high-risk cytogenetics and resulted in similar PFS and OS as in standard-risk patients.noneMina R.; Bonello F.; Petrucci M.T.; Liberati A.M.; Conticello C.; Ballanti S.; Musto P.; Olivieri A.; Benevolo G.; Capra A.; Gilestro M.; Galieni P.; Cavo M.; Siniscalchi A.; Palumbo A.; Montefusco V.; Gaidano G.; Omede P.; Boccadoro M.; Bringhen S.Mina R.; Bonello F.; Petrucci M.T.; Liberati A.M.; Conticello C.; Ballanti S.; Musto P.; Olivieri A.; Benevolo G.; Capra A.; Gilestro M.; Galieni P.; Cavo M.; Siniscalchi A.; Palumbo A.; Montefusco V.; Gaidano G.; Omede P.; Boccadoro M.; Bringhen S

    Minimal residual disease after transplantation or lenalidomide-based consolidation in myeloma patients: a prospective analysis

    Get PDF
    We analyzed 50 patients who achieved at least a very good partial response in the RV-MM-EMN-441 study. Patients received consolidation with autologous stem-cell transplantation (ASCT) or cyclophosphamide-lenalidomide-dexamethasone (CRD), followed by Lenalidomide-based maintenance. We assessed minimal residual disease (MRD) by multi-parameter flow cytometry (MFC) and allelic-specific oligonucleotide real-time quantitative polymerase chain reaction (ASO-RQ-PCR) after consolidation, after 3 and 6 courses of maintenance, and thereafter every 6 months until progression. By MFC analysis, 19/50 patients achieved complete response (CR) after consolidation, and 7 additional patients during maintenance. A molecular marker was identified in 25/50 patients, 4/25 achieved molecular-CR after consolidation, and 3 additional patients during maintenance. A lower MRD value by MFC was found in ASCT patients compared with CRD patients (p = 0.0134). Tumor burden reduction was different in patients with high-risk vs standard-risk cytogenetics (3.4 vs 5.2, ln-MFC; 3 vs 6 ln-PCR, respectively) and in patients who relapsed vs those who did not (4 vs 5, ln-MFC; 4.4 vs 7.8 ln-PCR). MRD progression anticipated clinical relapse by a median of 9 months while biochemical relapse by a median of 4 months. MRD allows the identification of a low-risk group, independently of response, and a better characterization of the activity of treatments

    Elotuzumab plus pomalidomide and dexamethasone in relapsed/refractory multiple myeloma: a multicenter, retrospective, real-world experience with 200 cases outside of controlled clinical trials

    Get PDF
    In the ELOQUENT-3 trial, the combination of elotuzumab, pomalidomide , dexamethasone (EloPd) proved to have a superior clinical benefit over pomalidomide and dexamethasone with a manageable toxicity profile, leading to its approval for the treatment of patients with relapsed/refractory multiple myeloma (RRMM) who have received at least two prior therapies, including lenalidomide and a proteasome inhibitor. We report here a real-world experience of 200 cases of RRMM treated with EloPd in 35 Italian centers outside of clinical trials. In our dataset, the median number of prior lines of therapy was two, with 51% of cases undergoing autologous stem cell transplant and 73% having been exposed to daratumumab. After a median follow-up of 9 months, 126 patients had stopped EloPd, most of them (88.9%) because of disease progression. The overall response rate was 55.4%, a finding in line with the pivotal trial results. Regarding adverse events, the toxicity profile in our cohort was similar to that in the ELOQUENT-3 trial, with no significant differences between younger (<70 years) and older patients. The median progression-free survival was 7 months, which was shorter than that observed in ELOQUENT-3, probably because of the different clinical characteristics of the two cohorts. Interestingly, International Staging System stage III disease was associated with worse progression-free survival (hazard ratio=2.55). Finally, the median overall survival of our series was shorter than that observed in the ELOQUENT-3 trial (17.5 vs. 29.8 months). In conclusion, our real-world study confirms that EloPd is a safe and possible therapeutic choice for patients with RRMM who have received at least two prior therapies, including lenalidomide and a proteasome inhibitor

    Paclitaxel loading in PLGA nanospheres affected the in vitro drug cell accumulation and antiproliferative activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PTX is one of the most widely used drug in oncology due to its high efficacy against solid tumors and several hematological cancers. PTX is administered in a formulation containing 1:1 Cremophor<sup>® </sup>EL (polyethoxylated castor oil) and ethanol, often responsible for toxic effects. Its encapsulation in colloidal delivery systems would gain an improved targeting to cancer cells, reducing the dose and frequency of administration.</p> <p>Methods</p> <p>In this paper PTX was loaded in PLGA NS. The activity of PTX-NS was assessed in vitro against thyroid, breast and bladder cancer cell lines in cultures. Cell growth was evaluated by MTS assay, intracellular NS uptake was performed using coumarin-6 labelled NS and the amount of intracellular PTX was measured by HPLC.</p> <p>Results</p> <p>NS loaded with 3% PTX (w/w) had a mean size < 250 nm and a polydispersity index of 0.4 after freeze-drying with 0.5% HP-Cyd as cryoprotector. PTX encapsulation efficiency was 30% and NS showed a prolonged drug release in vitro. An increase of the cytotoxic effect of PTX-NS was observed with respect to free PTX in all cell lines tested.</p> <p>Conclusion</p> <p>These findings suggest that the greater biological effect of PTX-NS could be due to higher uptake of the drug inside the cells as shown by intracellular NS uptake and cell accumulation studies.</p
    corecore