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Abstract

Global circulation models (GCMs) are routinely used to project future climate condi-

tions worldwide, such as temperature and precipitation. However, inputs with a finer

resolution are required to drive impact-related models at local scales. The non-

homogeneous hidden Markov model (NHMM) is a widely used algorithm for the pre-

cipitation statistical downscaling for GCMs. To improve the accuracy of the tradi-

tional NHMM in reproducing spatiotemporal precipitation features of specific

geographic sites, especially extreme precipitation, we developed a new precipitation

downscaling framework. This hierarchical model includes two levels: (1) establishing

an ensemble learning model to predict the occurrence probabilities for different

levels of daily precipitation aggregated at multiple sites and (2) constructing a NHMM

downscaling scheme of daily amount at the scale of a single rain gauge using the out-

puts of ensemble learning model as predictors. As the results obtained for the case

study in the central-eastern China (CEC), show that our downscaling model is highly

efficient and performs better than the NHMM in simulating precipitation variability

and extreme precipitation. Finally, our projections indicate that CEC may experience

increased precipitation in the future. Compared with �26 years (1990–2015), the

extreme precipitation frequency and amount would significantly increase by 21.9%–

48.1% and 12.3%–38.3%, respectively, by the late century (2075–2100) under the

Shared Socioeconomic Pathway 585 climate scenario.
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1 | INTRODUCTION

The latest Intergovernmental Panel on Climate Change (IPCC) report

has highlighted thought-provoking conclusions, such as the unprec-

edented warming of the climate due to human influence

(IPCC, 2021). It has been proven that water-related climate hazards

and multiple risks to ecosystems and human settlements intensify

with global warming (Sammen et al., 2022; Tabari, 2021), particularly

in coastal cities at low elevations (Toimil et al., 2020; Vousdoukas

et al., 2018).
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The global circulation model (GCM) can provide useful large-scale

fields of climate variables for future projections, but its horizontal spa-

tial resolution is too coarse to be used in water management at the

basin or regional scales (Christensen & Kjellström, 2020; Wang

et al., 2020). In addition, precipitation simulated by GCMs is strongly

biased, with heavy precipitation being notably underestimated

because of limitations in the modelling process (Huang et al., 2020;

Kang et al., 2015). These inadequacies often yield non-negligible

uncertainties in climate projections (Her et al., 2019; Norris

et al., 2021; Yang et al., 2020). It is crucial to establish strategies to

significantly reduce such bias, especially for extreme precipitation.

Statistical downscaling is a widely used approach to improve pre-

cipitation projections for GCMs. Wilby and Wigley (1997) reviewed

commonly used downscaling techniques to solve the problem of an

insufficient resolution of climate models compared with observed

data. These techniques can be divided into four categories: regression,

weather typing, stochastic weather generators and mesoscale model-

ling. In general, the local-scale relevant weather variables were consid-

ered as the predictands, whereas the large-scale atmospheric

circulation information of GCMs were predictors. Several authors

have examined the potential of the non-homogeneous hidden Markov

model (NHMM), a good representation of the stochastic weather gen-

erator and a very powerful diagnostic tool for detecting the stochastic

parameters between multiple sites precipitation and large-scale atmo-

spheric circulation variables (Cioffi et al., 2016, 2017; Shahriar

et al., 2021; Siabi et al., 2021). The basic assumptions of this statistical

downscaling approach are as follows: (1) the daily precipitation occur-

rence at multiple sites depends on a finite number of unobserved

weather states (hidden states) and (2) state transition probabilities

depend on the former state and time-dependent atmospheric predic-

tors (Bates et al., 2010; Charles et al., 2004; Hughes et al., 1999).

Relevant candidate predictors for the NHMM mainly include the

geopotential height (GP), sea level pressure, wind fields, air temperature,

humidity and their combinations (Ghamghami & Bazrafshan, 2021;

Neykov et al., 2012; Zha et al., 2022). Given the high dimensionality of

the original datasets, the inputs have to undergo a principal component

analysis to find the most dominant behaviours of the large-scale atmo-

spheric predictors (Ghamghami et al., 2019). For instance, Panda et al.

(2022) only selected the first few components explaining 95% variance

for each predictor. Guo et al. (2022) used a combination of the first

26 components of four predictors to run the NHMM downscaling. Liu

et al. (2011) used two indicators, that is, the explained variances and

partial correlation to select the predictors from 20 candidate variables

for daily precipitation downscaling. Cioffi et al. (2016) adopted statistical

criteria, that is, normalized log-likelihood to evaluate the accuracy of dif-

ferent combinations of potential predictors. Nonetheless, selecting the

predictors of such models can be computationally intensive, especially

when dealing with a large number of predictors or hidden states. This

complexity can limit their applicability, particularly for operational use.

In addition, a multinomial logistic function is used to model the

dependence of the hidden state transition matrix on such exogenous

variables. Despite the reliable results of precipitation variabilities

obtained by NHMM downscaling in several applications, the NHMM

yields inaccurate simulations of mid-latitude precipitation in spring

and autumn as well as extreme precipitation (Cioffi et al., 2020). Given

the spatio-temporal variability of predictors, the NHMM is limited in

its ability to capture extreme precipitation behaviours. To address

these limitations, we proposed a slight modification of the NHMM

downscaling framework, employing a hierarchical modelling scheme.

At the first level, we used an ensemble learning model to construct

intermediate features that are instrumental in classifying precipitation

within homogeneous regions. This ensemble learning model combines

the robustness of Random Forest (RF) and the efficiency of eXtreme

Gradient Boosting (XGBoost). These intermediate features, produced

by our tailored ensemble learning model, influence the NHMM at the

second level of our hierarchy. Here, the NHMM extracts statistical pre-

cipitation characteristics for each rain gauge within the defined homo-

geneous regions. The efficacy of this integrated approach is rooted in

the proven success of machine learning techniques in hydrological sta-

tistical downscaling. Machine learning-based approaches like RF, Sup-

port Vector Machine (SVM) and Gradient Boosting (GB) have

demonstrated effectiveness in yielding accurate predictions, particularly

for multi-class classification tasks, common in hydrological prediction

(Ahmed et al., 2020; Zhou, 2021). Thus, our ensemble learning model,

underpinned by the RF and XGBoost algorithms, extends these proven

methods' capabilities, improving overall forecasting accuracy and reli-

ability. The choice of an ensemble learning model is further justified by

the work of Rahman et al. (2021). They developed a multi-class flood

probabilities assessment model for Bangladesh using different meta-

classifiers in a stacking method, which showed minimized overfitting, a

common issue in machine learning applications for hydrology.

The decision to pair NHMM with an ensemble learning model in

this research stems from the success of similar models in other fields.

Bengio et al. (1992), for instance, enhanced the performance of HMM

using Artificial Neural Networks (ANN). Similarly, Hassan et al. (2007)

improved stock market forecasting by merging HMM with ANN and

Genetic Algorithms. Trentin and Gori (2001) underscored the substantial

improvements in automatic speech recognition achieved by hybrid sys-

tems combining models specializing in classification (e.g., RF, XGBoost,

ANN) with those adept at recognizing temporal patterns (e.g., HMM,

NHMM). Despite the proven efficacy of these individual components,

the combination of NHMM with an ensemble learning model is a novel

approach in hydrology. The motivation behind this new approach is to

leverage the strengths of both methodologies: the NHMMs' ability to

capture temporal dependencies in hydrological data and the ensemble

learning model's proficiency in mitigating overfitting risk, while maximiz-

ing predictive accuracy. By leveraging these complementary strengths,

our innovative approach marks a promising step forward in enhancing

the precision and reliability of precipitation prediction in the field of

hydrology. This paper will outline the methodology and validation of this

novel framework, highlighting its potential contributions to the ongoing

evolution of hydrological modelling and forecasting.

In this study, we considered ensemble learning to predict the

occurrence probability of different levels of daily precipitation aggre-

gated at multiple sites. The GP at 500 hPa and the vertically inte-

grated water vapour transport (IVT) were selected as key factors

affecting the precipitation occurrence (Conticello et al., 2018). Fur-

thermore, the predicted probabilities were used as predictors to
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model the transitional probabilities of hidden states in the NHMM.

We determined if such a difference in predictors can improve the

accuracy of the NHMM results. The aims of our study were as fol-

lows: (1) design an ensemble learning model for predicting the proba-

bility of daily precipitation events with different intensities;

(2) improve the accuracy of the NHMM model concerning precipita-

tion simulation, especially extreme events; and (3) project future pre-

cipitation and possible changes in extremes over central-eastern

China (CEC) under different emission scenarios.

2 | STUDY AREA AND DATASETS

2.1 | Study area

Our study area is the CEC (25� N–35� N, 106� E–123� E), where pre-

cipitation is greatly affected by synoptic-scale circulation systems,

such as the Meiyu front and typhoon cyclone. During mid-June and

mid-July, a quasi-stationary front forms over the mid-lower reaches of

the Yangtze River, which is related to the poleward moisture transport

from the ocean derived by Western Pacific Subtropical High (WPSH)

and low-level southwesterly jet (Ding et al., 2020). The Meiyu rain

band in the lower troposphere can generally be observed at the north-

ern boundary of the front and feeds precipitation system develop-

ment and maintenance. Another important factor is the cyclone

activity. It has been proven that the tropical cyclone circulation sys-

tem, including frontal clouds and outward spiralling rain bands, could

favour more intense precipitation over CEC (Tang et al., 2021).

2.2 | Datasets

Daily precipitation observations (1960–2015) were recorded at

228 gauges from the China Meteorological Data Service Centre

(http://data.cma.cn/). One reanalysis product, the fifth generation

atmospheric reanalysis (ERA5) with 0.25� spatial resolution was

obtained from the Copernicus Climate Change Service Climate Data

Store. One GCM of the Coupled Model Intercomparison Project

Phase 6 (CMIP6), MPI-ESM1-2-HR (0.9� � 0.9�) was downloaded

from the Max Planck Institute for Meteorology, Germany. To investi-

gate the future precipitation projection, we used MPI-ESM1-2-HR to

simulate both historical period precipitation (1960–2014) and that

due to three climate scenarios with different shared socioeconomic

pathways (SSP126, SSP245 and SSP585 from 2015 to 2100)

(Meinshausen et al., 2020). Considering the historical simulation end

by 2014 for GCMs, data from 2015 under the SSP585 scenario were

employed as the historical to be consistent with the rain gauge period,

while the future projection spans from 2016 to 2100.

For the domain of interest (10� S–70� N and 40� E–170� W), the

used variables of ERA5 and MPI-ESM1-2-HR are geopotential height

(GP) at 500 hPa, specific humidity and u/v wind fields from 250 to

1000 hPa. Their spatial resolution was resampled to 0.25� using the

nearest neighbour interpolation method.

3 | METHODOLOGY

The overall structure of the stacked ensemble learning and non-

homogeneous hidden Markov models (‘Ensemble-NHMM’) which is

proposed in this study, consists of three steps: data preprocessing,

ensemble learning model and NHMM (Figure 1). In the following sub-

section, the three steps are described in detail.

3.1 | Data preprocessing

Data preprocessing consists of four steps: (1) identification of differ-

ent rain gauge clusters based on event synchronization of precipita-

tion extremes; (2) for each cluster identifying different precipitation

amount classifications; (3) choice of large-scale atmospheric predictors

and (4) standardization and data reduction of predictors.

First, extreme precipitation refers to daily records exceeding the

95th threshold from 1960 to 2015 (only days with an amount above

0.1 mm are considered). For each rain gauge, the total amount and

frequency of extreme precipitation per year were obtained. The syn-

chrony degree matrix of extreme precipitation events among the rain

gauges was calculated with the event synchronization method. Homo-

geneous regions for rain gauge classification were identified using a

Complex Network approach (Newman, 2012) in conjunction with

a pooling method known as the Louvain Method (Blondel et al., 2008;

Conticello et al., 2020). The Complex Network approach effectively

detects patterns and structures in the data, while the Louvain

Method, celebrated for its efficiency in community detection within

large networks, groups rain gauges into homogeneous regions based

on similar rainfall patterns (Boers et al., 2019; Singhal et al., 2023). In

this study, rain gauges were clustered into different clusters by

F IGURE 1 Flow chart of the proposed downscaling framework.
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looking at the modularity values of the synchrony degree matrix.

Within the same cluster, extreme precipitation events have a high

degree of synchronization. For detailed information, please refer to

Jiang et al. (2022).

Second, the daily precipitation was converted into categorical

data. Let Yt be a vector denoting the observed precipitation levels on

the day t.

Yt ¼max Prt ≥Prx
�ð Þ ð1Þ

where Prt is the original precipitation amount averaged by all rain

gauges across a cluster, Prx
� indicates the precipitation thresholds of

Prt at different percentiles and max :ð Þ is a transform function that

yields the maximum level on day t for Prt.

Furthermore, large-scale atmospheric circulation variables of the

ERA5 or GCMs were utilized as predictors. It is recommended that

predictors should be physically sensible in regional precipitation pro-

cesses and reliable for future projections. Consequently, time

sequences of selected variables were standardized using the z-score

method, which is dimensionless. The principal component analysis

(PCA) was applied to identify their leading behaviours for the domain

of interest.

Here, GP at 500 hPa and the IVT (calculated from the specific

humidity and u/v wind fields from 1000 to 250 hPa, Henny et al.

(2023)) were utilized as predictors. We chose the two predictors

based on the following considerations: IVT quantifies the intensity of

moisture transport which affects a given specific geographic region

and thus the probable intensity of precipitation. GP represents the

atmospheric circulation features and in particular the fluid flow struc-

ture. Together, these two predictors describe the direction and inten-

sity of humidity transport. Moreover, our previous study showed that

the anomalous mid-level GP and strong water vapour transport from

the adjacent seas could provide a favourable atmospheric circulation

background for precipitation, especially extremes over CEC (Jiang

et al., 2022).

We then extracted the standardized IVT values corresponding to

the geographical location of the rain gauges as an independent vari-

able (IVT_set). To better interpret the circulation variations, the first

standardized 50 principal components of GP that explained more than

96% of the total variance were selected as the second predic-

tor (GP_pca).

3.2 | Ensemble learning model

The task of the ensemble learning model is to learn and predict the

probability of predefined mean daily precipitation levels of a rain

gauge cluster based on two machine learning approaches: XGBoost

and RF. RF, a tree-based machine learning method, is renowned for its

high accuracy, robustness to overfitting and its capability to handle

large datasets with high dimensionality (Breiman, 2001). XGBoost

complements this with a regularized model formulation that controls

overfitting, thereby enhancing overall performance (Chen &

Guestrin, 2016). Relevant methodologies of XGBoost and RF are

introduced in Supporting Information.

Figure 2 shows the workflow of the ensemble learning model.

Its core concept is to use predictions from the lower level cast into

the higher level for the meta classifier and minimize the errors.

The inputs are represented by the atmospheric predictors

I¼ IVT_sett,m,GP_pcat,p,Yt
� �� �

, t¼1,…,T;m¼1,…,M, p¼1,…,P, where

T and M are the total number of days from 1960 to 2015 and the

number of rain gauges in a cluster, respectively; P is the number of

principal components of GP for the domain of interest. The descrip-

tions of IVT_set, GP_pca and Yt were presented in Section 3.1.

At level 1, 90% of the samples were randomly separated as the

training set to optimize the first XGBoost model. Its task is to obtain

the preliminary probability prediction (Predict_1) of multi-level daily

precipitation for each day. At level 2, an ensemble-based approach

was adopted to combine the outputs of the basic learner (RF) with the

meta-learner (second XGBoost) to achieve the best prediction through

F IGURE 2 Flowchart of the ensemble learning model.
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fast iteration. First, the training set was randomly divided into two

subsets again by the ratio 3:7. The RF model was constructed on 30%

of the training set and aimed to write out a new feature with the

remaining. Subsequently, the second XGBoost model was trained

using 70% of the training data, alongside the additional feature.

The prediction task at level 2 was conducted N times (in this

experiment, N=120). For each round, all samples were applied to the

RF model to obtain the additional features (Tem_RF) for each day. The

Tem_RF and the original feature data were then fed in to the second

XGBoost model to make the 2nd prediction (Predict_2). Finally, the

predictions of the basic learner (level 1) were stacked with those of

meta classifiers (level 2) to output the final decision (Meta_pro), which

is the average of the Nþ1 independent predictions.

The output Meta_pro is a two-dimensional vector with c columns

and T rows, containing the predicted probability of each data point

belonging to each class of mean precipitation percentile as defined in

Equation (1), where c is the total number of predefined daily precipita-

tion levels. Therefore, possible weather states on day t can be quanti-

fied using the probability information contained in the c columns. The

sum of the predicted probabilities of the c precipitation levels on day t

is equal to 1.

The ensemble learning model was implemented in Rstudio using

R version 4.1.3. Table 1 summarizes the specific parameter settings

and explanations of the XGBoost and RF classifiers. First, the ratio of

training samples was set to 0.8 to tune the hyperparameters, for

example, tree depth (max:depth), learning rate (eta) and leaf node

weight (min_child_weight) for XGBoost. The tuning task was to mini-

mize the training logloss of multi-classes. In the RF, the out of bag

score was referenced to select the number of trees (ntree) and candi-

dates at each split (ntry). For the final predictions, we referred to the

confusion matrix to evaluate the model's performance in simulating

the probabilities of different precipitation levels.

In our downscaling framework, the simulated multi-level daily

precipitation probabilities with homogeneous regions were used as

the intermediate features to cast the NHMM downscaling scheme.

3.3 | Non-homogeneous hidden Markov model

The NHMM model is a stochastic dual process involving two variables:

the daily rainfall amount of a multivariate set of rain gauges, and a finite

and countable number of discrete hidden states (Hughes et al., 1999).

Such variables and their mutual link are defined as follows:

1. Let Rt ¼ R1
t ,…,RM

t

� �
be a multivariate vector of the daily precipita-

tion record from M rain gauges on day t belonging to a cluster, it is

assumed that the observations Rt at time t are independent of all

other variables in the model up to time t, and moreover they are

depending on the hidden state St at time t, that

is, P RtjR1:t�1;S1:tð Þ¼P RtjStð Þ;
2. Let St ¼ 1,…,sð Þ be the hidden state (or weather state) on day

t whose probability transition from a hidden state to another one

is modelled as a first-order Markovian process

StjS1:t�1;X1:tð Þ¼P StjSt�1;Xtð Þ and it is conditioned by exogenous

variables Xt which generally represent the influence of atmo-

spheric predictors on the transition probability.

Subsequently, the log-likelihood of the data under the NHMM

model can be formulated as

l¼ logP RjXð Þ¼ log
X
S

P S1jX1ð Þ
YT
t¼2

P StjSt�1,Xtð Þ
" # YT

t¼1

P RtjStð Þ
" #

ð2Þ

We used multinomial logistic regression to model multivariate

hidden state transitions:

P St ¼ jjSt�1 ¼ i,Xt ¼ xð Þ¼ exp σjiþρjx
t

� �
PH
h¼1

exp σjhþρhxt
� � ð3Þ

where H denotes the number of hidden states. An independent delta–

gamma function was selected to model emission probabilities. The

TABLE 1 Parameter settings in the ensemble learning model.

Parameter Explanation Value

XGBoost booster Specify the type of booster gbtree

objective Specify the learning task of the model multi:softprob

max.depth Maximum depth of a tree 8a, 11b

eta Learning rate 0.1a, 0.46b

nrounds Number of rounds 1200a, 60b

min_child_weight Minimum weight for a child leaf node 3a, 10b

subsample Ratio of training samples 0.8

eval_metric Evaluation metrics for validation mlogloss

RF ntree Number of trees 100

ntry Number of variables randomly used as candidates at

each split

7

aXGBoost 1.
bXGBoost 2.
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best NHMM fits the conditional probability of the observation

sequence determined using the expectation–maximization technique

(Moon, 1996). The most likely weather state sequence can then be

generated from the NHMM using the Viterbi algorithm. Log-likelihood

and Bayesian information criteria were selected to identify the most

appropriate number of hidden states. In this study, a 5-fold cross-

validation was used to train the NHMM.

Contrary to the conventional approach that relies on atmospheric

circulation data to construct the NHMM downscaling model, we

introduced a novel downscaling framework. This framework leverages

the probabilities of various precipitation levels derived from ensemble

learning model outputs as predictors. For each cluster, we carried out

two distinct downscaling experiments:

a. The Ensemble-NHMM downscaling model, which is anchored on

daily precipitation probabilities.

b. The standard NHMM that incorporates the original sequence of

the primary principal components from standardized atmospheric

predictors.

For our study, both models underwent 100 simulations.

3.4 | Evaluation indicators

Two indicators were selected to assess the performance of the

Ensemble-NHMM and NHMM. The first is the coefficient of variation

of the root-mean-squared error (CVRMSE), which quantifies the stan-

dard deviation of the differences between simulations and

observations. The other is the correlation coefficient (CC), which is

used to estimate the linear relationship between simulations and

observations.

CVRMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

simi�obsið Þ2
s

1
n

Pn
i¼1

obsi

ð4Þ

CC¼

Pn
i¼1

simi� sim
� �

obsi�obs
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

simi� sim
� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
obsi�obs
� �2s ð5Þ

where sim and obs indicate the simulations and observations from the

Ensemble-NHMM (or NHMM) and rain gauge, respectively, and n is

the total number of samples.

4 | RESULTS

4.1 | Ensemble learning model performance in
daily precipitation classification

4.1.1 | Clustering of rain gauges

In our previous research (Jiang et al., 2022), rain gauges over the CEC

were divided into four clusters for two time periods, 1960–1989 and

1990–2015, when considering abrupt changes in extreme precipita-

tion (Figure S1). In this study, we categorized a new cluster named

‘Central’, (including the rainfall gauges whose communities differed

between the two periods) as shown in Figure 3. The remaining clus-

ters are labelled as ‘East’, ‘West’, ‘North’ and ‘South’. Subsequently,
the average daily precipitation across each cluster was converted into

categorical data. A number of model runs varying the number of clas-

ses and the precipitation percentile of each class were carried out. To

prevent model overfitting, balance was maintained in the number of

observations between the classes considering that, for each cluster,

from 1960 to 2015, more than 25% of observations concerned no

rain days. As explained below in Section 4.1.2, based on the accuracy

rate in reproducing the observed time series of daily precipitation

levels, five percentiles (i.e., no rain, 0.1 mm/day, 30th, 60th and 95th)

were selected. Table 2 shows the intervals corresponding to differentF IGURE 3 Spatial distributions of five rain gauge clusters.

TABLE 2 Classifications of daily precipitation (unit: mm/day) for the five clusters.

I II III IV V

East [0, 0.1) [0.1, 0.95) [0.95, 4.19) [4.19, 23.29) ≥23.29

West [0.1, 0.86) [0.86, 3.48) [3.48, 19.58) ≥19.58

North [0.1, 0.66) [0.66, 2.54) [2.54, 14.08) ≥14.08

South [0.1, 1.23) [1.23, 4.55) [4.55, 21.16) ≥21.16

Central [0.1, 1.09) [1.09, 3.91) [3.91, 17.62) ≥17.62
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precipitation percentiles of the five clusters. The precipitation levels

corresponding to these intervals were labelled as follows: no event (I),

very light precipitation (II), light precipitation (III), moderate precipita-

tion (IV) and heavy precipitation (V).

4.1.2 | Performances of ensemble learning model

For each rain gauge cluster, the output of the ensemble learning

model was a two-dimensional vector containing the predicted occur-

rence probability of the five predefined daily precipitation levels from

1960 to 2015. To investigate the performance of the ensemble learn-

ing model, we selected the simulated level with the highest occur-

rence probability as the eventually predicted level on a daily basis and

compared it with the observed value [Yt, in Equation (1)]. Table 3

shows the confusion matrix of the predicted and observed daily pre-

cipitation levels for the five clusters. The accuracy rate is the ratio of

correct predictions for a precipitation level. Overall, the ensemble

learning model shows a superior capability in classifying no rain days

and in predicting moderate precipitation events for the five clusters

(accuracy rates exceed 88% and 83%, respectively). A relatively lower

accuracy rate was observed for very light and heavy precipitation

levels; the confusion matrix indicates that some heavy

precipitation events were misclassified as moderate. Furthermore, to

evaluate the capability of the ensemble learning model in depicting

precipitation seasonality, daily precipitation was classified into differ-

ent months. As shown in Figure 4a, the ensemble learning model

yields better performance in the non-rainy season (from October to

March) for the five clusters, with an average classification accuracy

rate of 82.14%; while the reported accuracy is 77.43% in the rainy

season (from April to September). The lowest accuracy rate was

observed in the East cluster from July to August.

To further understand the capability of the ensemble learning

model, we separately examined the accuracy of using only the RF or

XGBoost to predict the probabilities of multi-level daily precipitation.

Figure 4b demonstrates the overall performance of the ensemble

TABLE 3 Confusion matrix of the
predicted and observed daily
precipitation levels for the five clusters
and related accuracy rate.

Cluster Precipitation level

Predicted

Accuracy rate (%)I II III IV V

East Actual I 8922 107 133 165 1 95.65

II 908 2008 179 241 0 60.19

III 634 127 2094 476 2 62.83

IV 364 83 182 3250 8 83.61

V 13 3 10 169 361 64.93

West Actual I 5204 273 180 201 0 88.84

II 721 2922 325 408 0 66.77

III 401 285 2993 693 2 68.43

IV 204 163 347 4374 15 85.71

V 13 12 16 217 471 64.61

North Actual I 6384 156 186 135 0 93.05

II 899 2616 310 250 0 64.20

III 397 195 2841 636 4 69.75

IV 126 80 299 4224 23 88.89

V 0 2 1 236 440 64.80

South Actual I 4633 357 126 96 1 88.87

II 559 3279 400 327 3 71.78

III 226 470 3183 685 4 69.68

IV 100 213 362 4635 21 86.94

V 1 4 6 262 487 64.08

Central Actual I 4875 316 165 108 0 89.22

II 629 3112 407 349 0 69.20

III 267 392 3183 646 2 70.89

IV 115 188 376 4539 22 86.62

V 1 4 11 230 503 67.16

Note: Bold represents the number of correct predictions of the ensemble learning model.
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learning, RF and XGBoost for the five clusters. The statistical results

indicate that the ensemble learning model has better prediction skills

than the RF and XGBoost. The accuracy rate of the ensemble learning

model ranges from 78.10% to 81.38%, while it ranges from 57.16% to

65.47% for the RF and from 72.80% to 77.69% for the XGBoost,

respectively. Merging base learners, even those with suboptimal per-

formance, enhances the predictive strength of the multi-class proba-

bility model for daily precipitation.

4.2 | Comparison of Ensemble-NHMM
and NHMM

Atmospheric circulation substantially affects the variability of regional

precipitation and the magnitudes of extreme precipitation events

under global warming (Zhang et al., 2021). In this section, we focus on

evaluating the Ensemble-NHMM and NHMM downscaling models for

depicting precipitation variability and extreme precipitation simula-

tions. It is worth noting that the two models have distinctions in how

they incorporate atmospheric predictors to influence the conditional

hidden state transitional probability. The NHMM, as defined by

Equation (3), directly uses the PCs of the atmospheric predictor within

the framework of multinomial logistic regression. Conversely, the

Ensemble-NHMM introduces an added layer of complexity by

leveraging the probabilities of different precipitation levels, derived

from ensemble learning model outputs, as intermediate predictors

that are influenced by atmospheric conditions.

4.2.1 | Precipitation variabilities

After evaluating the number of hidden states ranging from 2 to

10, the optimum number of hidden states for the two downscaling

models was determined to be 6. For each rain gauge, 100 downscaled

precipitation events were simulated by the Ensemble-NHMM and

NHMM on a daily basis. Comparisons with observations were first

conducted for monthly precipitation. Daily precipitation was accumu-

lated on a monthly scale. Next, across the five clusters, we examined

the CVRMSE indicator, which was calculated by comparing the

monthly precipitation averaged by the rain gauges and the simulations

of Ensemble-NHMM and NHMM. Table 4 presents the results calcu-

lated from the median of the 100 simulations. For CEC as a whole,

the Ensemble-NHMM has a lower error (average CVRMSE of 0.26)

concerning monthly precipitation simulations compared with the

NHMM (average CVRMSE of 0.45). Furthermore, the temporal varia-

tions in the monthly mean precipitation for the five clusters agree

more closely with the observations (Figure 5). This suggests that the

Ensemble-NHMM can reproduce the seasonality of the precipitation

very well over CEC when using the probabilities of different precipita-

tion levels as predictors. The boxplots indicate that the NHMM made

significant errors in estimating precipitation in May and June, espe-

cially for the West, South and Central clusters.

We compared the Ensemble-NHMM and NHMM for annual precip-

itation simulations accumulated from daily precipitation data. Table 5

summarizes the CVRMSE between the observations and simulations,

considering different lengths of moving windows for the annual precipi-

tation. Overall, the Ensemble-NHMM performs better than the NHMM,

with a lower CVRMSE. As the CVRMSE tends to decrease with the

increasing length of moving windows, time series with 15a weighted

was chosen to depict the precipitation change trends more precisely.

Figure 6 shows the observed and simulated mean annual precipitation

under 15a moving windows for the five clusters, which were averaged

by their respective rain gauges. We observed that the Ensemble-NHMM

was able to capture the year-to-year and interannual variations in precip-

itation over CEC, whereas the NHMM tended to overestimate the

annual precipitation for the five clusters and failed to capture the peak

value in 1997 for the West cluster and in 2000 for the Central cluster.

4.2.2 | Extreme precipitation

The 95th percentile of the wet days (daily precipitation ≥ 0.1 mm/

day) was used to define extreme precipitation for each rain gauge. For

the simulations, extreme precipitation was directly calculated when

considering the observation thresholds. Subsequently, we obtained

the total frequency and amount exceeding the 95th percentile for

each year from 1960 to 2015. Figure 7 compares the means of the

F IGURE 4 Accuracy rate of the ensemble learning model in
different months (a) and (b) the overall performance of the ensemble
learning, RF, and XGBoost models for the five clusters.
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total extreme precipitation frequency and amount over 56 years for

the observations and simulations. The gauges are represented by dots.

Referring to the 1:1 lines (dotted lines) and the evaluation results pre-

sented in these figures, we confirm the Ensemble-NHMM provides

good approximations of the climatology of extremes across all gauges.

The NHMM also performs well in reproducing extremes, but there is a

relatively worse CC for extreme precipitation frequency. In addition,

the Ensemble-NHMM is better at characterizing annual extreme pre-

cipitation than the NHMM. The Ensemble-NHMM captures the

means of the total extreme precipitation frequency and amount com-

pared to observations.

TABLE 4 CVRMSE of the simulated monthly precipitation for the Ensemble-NHMM and NHMM.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Ensemble-NHMM East 0.37 0.28 0.22 0.25 0.29 0.34 0.26 0.24 0.25 0.36 0.32 0.43

West 0.35 0.27 0.18 0.23 0.28 0.24 0.25 0.22 0.22 0.27 0.27 0.36

North 0.41 0.34 0.25 0.31 0.24 0.23 0.22 0.20 0.27 0.27 0.29 0.40

South 0.22 0.21 0.16 0.17 0.22 0.24 0.23 0.17 0.22 0.31 0.29 0.37

Central 0.26 0.20 0.18 0.20 0.27 0.27 0.22 0.22 0.22 0.22 0.26 0.32

NHMM East 0.72 0.52 0.31 0.31 0.29 0.44 0.34 0.39 0.34 0.48 0.41 0.82

West 0.77 0.63 0.35 0.27 0.35 0.39 0.38 0.34 0.37 0.35 0.38 0.83

North 1.40 1.05 0.39 0.33 0.27 0.33 0.30 0.31 0.35 0.35 0.54 1.51

South 0.64 0.52 0.29 0.22 0.29 0.37 0.31 0.34 0.30 0.44 0.40 0.71

Central 0.59 0.41 0.26 0.27 0.38 0.41 0.33 0.34 0.28 0.32 0.33 0.68

F IGURE 5 Boxplots of the observed (grey) and simulated (green: NHMM, orange: Ensemble-NHMM) mean monthly precipitation amount for
the (a) East, (b) West, (c) North, (d) South and (e) Central clusters. Thick lines represent the average.

TABLE 5 CVRMSE of simulated annual precipitation trends under
three periodic moving averages for the Ensemble-NHMM
and NHMM.

Ensemble-NHMM NHMM

1a 5a 15a 1a 5a 15a

East 0.161 0.080 0.047 0.202 0.122 0.100

West 0.151 0.070 0.043 0.161 0.104 0.079

North 0.197 0.088 0.047 0.218 0.115 0.084

South 0.142 0.066 0.036 0.156 0.081 0.054

Central 0.162 0.076 0.047 0.171 0.083 0.057
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4.3 | Future precipitation projection under
different climate change scenarios

4.3.1 | Analysis of the control run

In the above-mentioned analysis, we explored the Ensemble-NHMM

in downscaling precipitation using the multi-level daily precipitation

occurrence probabilities, which were predicted by the GP at 500 hPa

and IVT from ERA5 data. We further analysed how the GCM model,

specifically MPI-ESM1-2-HR, performs with the Ensemble-NHMM

during the same historical period. All steps of the Ensemble-NHMM-

were repeated using the MPI-ESM1-2-HR data.

Because the Ensemble-NHMM is a data-driven model, changes in

the data source could directly affect the recognition of the hidden

states and their most probable sequence, which has a considerable

influence on the simulated sequence of daily precipitation. We

selected six hidden states and examined the goodness of fit of the

hidden state sequence based on MPI-ESM1-2-HR with the results of

ERA5. During the period 1960–2015, the consistency rate of hidden

state occurrence was as high as 98% (98.62%, 98.56%, 99.69%,

98.01% and 96.63% of the East, West, North, South and Central clus-

ters, respectively), indicating that MPI-ESM1-2-HR can capture the

statistical behaviour of actual observations.

We then evaluated the accuracy of the downscaled precipitation

based on MPI-ESM1-2-HR. Tables S1–S3 list the evaluation results of

the mean monthly, annual and extreme precipitation simulations for

MPI-ESM1-2-HR. Monthly CVRMSE statistics range between 0.22

and 0.59, with an average of 0.34. MPI-ESM1-2-HR performed better

in the non-rainy months. The annual CVRMSEs of MPI-ESM1-2-HR

were close to those of ERA5. Furthermore, when considering MPI-

ESM1-2-HR in the estimations of the means of the total extreme pre-

cipitation frequency and amount, the CVRMSEs do not exceed 0.12

and 0.20, respectively. In summary, compared with the results pro-

duced by ERA5, the performance of MPI-ESM1-2-HR is satisfactory,

and we can fully consider the downscaling model in scenario data.

4.3.2 | Future precipitation projection

Before the projection of precipitation, we must state that there is a

basic assumption, that is to say the future atmospheric circulation fea-

tures of GCMs must respect the statistical consistency of ERA5 reana-

lysis ones in the historical period (Cioffi et al., 2016). Thus, we

restructured the PCs in the period 2016–2100 for the three emission

scenarios to be consistent with the mean and variance of those in the

historical period, respectively. Subsequently, the restructured first

50 leading PCs of GP at 500 hPa and IVT were used to simulate the

multi-level daily precipitation probabilities from 2016 to 2100 based

on the ensemble learning model trained by the historical data of MPI-

ESM1-2-HR. Thus, we can directly use the Ensemble-NHMM to per-

form the projections.

Figure 8 shows the mean annual precipitation projections under a

15a moving average window for the five clusters. Under the SSP245

and SSP585 emission scenarios, the annual precipitation over the CEC

F IGURE 6 Observed (grey) and simulated (green: NHMM, orange: Ensemble-NHMM) mean annual precipitation amount under the 15a
moving window for the (a) East, (b) West, (c) North, (d) South and (e) Central clusters. Shadow represents the 90% confidence interval (CI) of
Ensemble-NHMM.
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may significantly increase over the next 85 years. The largest boost is

projected in 2060–2100 under the SSP585 scenario. While limiting

anthropogenic greenhouse gas emissions at the lowest scenario, pre-

cipitation over the CEC shows a relatively slight increase from 2016

to 2070, followed by a decreasing trend in the last 30 years of the

21st century.

The future scenarios were divided into three sub-periods with a

26-year interval, that is, 2023–2048, 2049–2074 and 2075–2100,

F IGURE 7 Scatterplots of the means of total extreme precipitation frequency and amount (unit: mm/year) index for observations against the
simulations for the (a, f) East, (b, g) West, (c, h) North, (d, i) South and (e, j) Central clusters. Numbers 1 and 2 represent the NHMM and
Ensemble-NHMM, respectively.
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F IGURE 8 Annual precipitation projections under 15a moving average window for the (a) East, (b) West, (c) North, (d) South and (e) Central

clusters. Shadows represent the 90% confidence intervals.

F IGURE 9 Relative changes (%) of the projected mean annual precipitation amount in the early, mid and late 21st centuries under different
emission scenarios compared with the historical period 1990–2015.

12 of 18 JIANG ET AL.

 10991085, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14992 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



representing the early, mid and late 21st century, respectively. Pro-

jected changes in precipitation are presented relative to the historical

26-year period (1990–2015). Figure 9 shows the projected relative

changes in the mean annual precipitation. Positive and negative values

indicate more and less precipitation in the projection period than in

the historical period, respectively. In the early 21st century, under the

three emission scenarios, the mean annual precipitation amount indi-

cates a slight drying tendency over the north-eastern CEC and sites in

the centre (Figure 9a,d,g). The projected decrease remained over the

north-eastern CEC in the mid- and late century under the SSP126

scenario (Figure 9b,c). However, over the southern and western parts

of CEC, a slightly wetter condition is projected in the early 21st cen-

tury under the three scenarios. Furthermore, this wetter tendency is

expected to be pronounced in the mid- and late periods, especially

under the SSP585 scenario, with an increasing percentage beyond

30% (Figure 9f,i).

Figure 10 shows boxplots of the means of the total extreme pre-

cipitation frequency and amount index for historical and future

F IGURE 10 Boxplots of the means of the total extreme precipitation frequency and amount (unit: mm/year) for the historical period (1990–
2015) and the future projections for three sub periods (early, mid and late 21st centuries) under different warming scenarios. (a, f) East, (b, g)
West, (c, h) North, (d, i) South and (e, j) Central clusters.

JIANG ET AL. 13 of 18

 10991085, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14992 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



projections under different warming scenarios. The relative changes

for the early, mid and late 21st centuries compared with the historical

period of 1990–2015 are summarized in Table 6. Bold font indicates

statistically significant changes at the 95% confidence level. In the

early 21st century, the projected changes in the mean of the total

extreme precipitation frequency show regional differences under the

three scenarios. Except for a slight increase found for the east clus-

ter, the remaining regions are likely to face less frequent extreme

precipitation. Meanwhile, weakened extreme precipitation intensity

is found over CEC. In the the North cluster, the negative changes are

projected to decrease by �14.91%, �15.42% and �14.86% under

the SSP126, SSP245 and SSP585 scenarios, respectively. By the

mid-21st century, projected changes in extreme precipitation in

most areas switch from negative (decreasing) to positive (increasing).

Except for the North cluster, the mean of the total extreme precipi-

tation frequency for the remaining clusters is projected to increase

under the SSP245 and SSP585 scenarios. It produces the largest

magnitude ranging from 15.33% to 38.79% in the worst scenario.

For example, the projected mean extreme frequency of the South

cluster increases to 11.89 times per year under the SSP585 scenario,

which is higher than that of the historical period (8.76 per year).

However, under the SSP126 scenario, the projected extreme amount

may decrease by �0.89% to �13.88% for the five clusters. In the

late century, the projected increases in precipitation extremes over

CEC are expected to be larger than those in the early- and mid-

periods. The means of the total extreme precipitation frequency and

amount significantly increase by 21.93%–48.07% and 12.32%–

38.33% respectively, in the scenario with the highest emission. The

change rates of the North and West clusters are relatively smaller

than those of the East, South and Central clusters. For the most

severe cluster, the mean extreme precipitation amount can increase

to 751.50 mm per year in the worst scenario. As expected, the pro-

jected extreme precipitation shows a continuous decrease over CEC

under the SSP126 scenario.

Our results show that the annual and extreme precipitation over

CEC have increased under global warming. Most regions will experi-

ence unprecedented precipitation and extremes in the late 21st cen-

tury under the scenario with the highest emission. This increase is

expected to be more severe over the southern CEC.

In general, changes in regional precipitation due to global warm-

ing can be decomposed into two contributors (Pfahl et al., 2017):

(1) thermodynamic effects and (2) dynamic forcing. First, the

enhanced atmospheric water-holding capacity resulting from increas-

ing global temperature that approximately in accordance with the the-

oretical rate of the Clausius–Clapeyron equation, could increase the

water vapour content and affect the magnitude of the precipitation

(Gorman & Schneider, 2009). On the other hand, global warming leads

to changes in atmospheric circulation characteristics relevant to spe-

cific geographic precipitation patterns (Mindlin et al., 2021; Vallis

et al., 2015). These changes in the circulation system can further influ-

ence moisture transport (Liu et al., 2020). For example, Yang et al.

(2022) showed that the strengthening of the WPSH under global

warming could cause more moisture transport from the ocean to East

China and induce heavy precipitation.

Figure 11 shows the anomaly fields of GP at 500 hPa and IVT

during the rainy season (April–September) in the early, mid and late

21st centuries compared with the historical period 1990–2015. The

figure shows that the GP at 500 hPa over CEC tends to increase due

to global warming, but the contour lines of the anomaly fields denote

an inhomogeneous feature in the horizontal direction during different

sub-periods. Significant changes in GP at 500 hPa and IVT anomalies

between the three scenarios can be detected only in the mid-21st

century. Based on Tebaldi and Friedlingstein (2013)'s research, signifi-

cant climate effects of different emission pathways cannot be

detected very quickly; this process requires 30–45 years at the

regional scale. In addition, ridge lines with enhanced pressure gradient

located in the coastal areas would promote water vapour transport

from the ocean to the south CEC, especially under the SSP585

TABLE 6 Relative changes (%) of the projected means of the total extreme precipitation frequency and amount in the early, mid and late 21st
centuries under different emission scenarios compared with the historical period 1990–2015.

2023–2048 2049–2074 2075–2100

SSP126 SSP245 SSP585 SSP126 SSP245 SSP585 SSP126 SSP245 SSP585

Frequency East 1.78 1.75 3.61 4.24 13.52 19.76 2.17 20.07 35.73

West �6.11 �7.07 �2.65 �0.74 6.67 15.33 �3.54 14.75 21.93

North �7.75 �8.28 �7.68 �6.63 �1.08 4.84 �7.86 4.20 23.22

South �2.87 �3.95 4.04 6.44 22.41 38.79 �0.56 35.70 48.07

Central �4.26 �5.05 1.68 3.70 16.87 32.31 �1.81 28.75 42.82

Amount East �5.50 �5.58 �3.68 �3.13 5.44 11.28 �5.12 11.48 26.21

West �13.65 �14.50 �10.41 �8.64 �1.78 6.17 �11.24 5.68 12.32

North �14.91 �15.42 �14.86 �13.88 �8.75 �3.42 �15.06 �3.90 16.61

South �9.69 �10.68 �3.19 �0.89 14.19 29.62 �7.55 26.68 38.33

Central �10.60 �11.32 �4.95 �3.06 9.25 23.85 �8.31 20.54 33.82

Note: Bold fonts represent statistically significant changes at the 95% confidence level.
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scenario. It is clear that in the mid- and late centuries, under different

emission scenarios, the south of CEC would receive stronger water

vapour transport than the north, which helps explain why the annual

precipitation and precipitation extremes are expected to be more

severe over the South cluster.

5 | DISCUSSION AND CONCLUSIONS

In this study, we proposed a new two-step precipitation hierarchical

downscaling framework consisting of an ensemble learning model that

combines XGBoost and RF to predict the probability of multi-level

daily precipitation events for an ensemble of clustered rain gauges.

Predicted probabilities were used as predictors for the NHMM to con-

duct precipitation downscaling at the scales of the individual rain

gauges. The downscaling model, that is, Ensemble-NHMM, projects

future trends in the daily precipitation amount in central-eastern

China under different SSPs. The conclusions can be summarized as

follows:

1. Our proposed ensemble learning model shows a superior capability

in predicting the occurrence probabilities of multi-class daily pre-

cipitation. It obtains better prediction skills than the individual

machine learning of RF and XGBoost.

2. Evaluation results show that the occurrence probability of differ-

ent precipitation levels is a good predictor for the NHMM model.

The Ensemble-NHMM performs well in simulating annual and

extreme precipitation compared with the traditional NHMM,

which directly uses the sequence of standardized IVTs and the first

leading 50 PCs of GP at 500 hPa as atmospheric predictors. In pre-

vious studies using NHMM, many statistical indicators and pro-

cesses were proposed to find the optimum predictors that are

physically sensible in regional precipitation processes (Chen

et al., 2018; Pineda & Willems, 2016), and this task often required

intensive computational resources. Here we identified just two

predictors, IVT and GP, whose reliability has been well

demonstrated in representing the main features of atmospheric

conditions affecting precipitation. Furthermore, the proposed

Ensemble-NHMM is more suitable than NHMM in representing

the possible nonlinearities in the link between daily precipitation

and atmospheric circulation features, since such nonlinearity can

be captured by the ensemble learning model. The multinomial

logistic regression (Equation 3), is thus just used to represent the

nearly linear link between multi-level daily precipitation probabili-

ties of homogeneous regions and daily rainfall amount of single

rain gauge belonging to the cluster.

3. We examined one of the CMIP6 models (MPI-ESM1-2-HR) for

precipitation downscaling via the Ensemble-NHMM during 1960–

F IGURE 11 Under three emission scenarios, the anomalies fields of GP at 500 hPa (contours, unit: gpm) and IVT (shadow, unit: kg m�1 s�1)
during the rainy season in the early, mid, and late 21st centuries compared with the historical period 1990–2015.
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2015. Based on the statistical metrics, the downscaled results of

MPI-ESM1-2-HR produce reliable trend simulations.

4. Based on the precipitation projection results of the MPI-

ESM1-2-HR, central–eastern China may receive more precipitation

in the period of 2016–2100, especially under the SSP245 and

SSP585 emission scenarios. However, in the SSP126 scenario, the

mean annual precipitation would decrease in the last 30 years of

the 21st century. Furthermore, compared with �26 years (1990–

2015), a slight drying tendency is projected over the north-eastern

CEC under the three emission scenarios. The extreme precipitation

frequency and amount will increase throughout the century

(2016–2100). In the late century, the extreme precipitation fre-

quency and amount may significantly increase by 21.9%–48.1%

and 12.3%–38.3%, respectively, in the case of the worst emission

scenario.

Certainly, in our proposed downscaling framework, there is room

for improvements. First of all, for the ensemble learning model, it

shows a superior capability in classifying no rain or rain and capturing

moderate precipitation events, but improvements need to be thought

to increase the accuracy in detecting the regional heavy precipitation

events. In addition, we assumed that the leading features of future

atmospheric circulation remain the same, only changes in frequency

and intensity. In the next study, the non-stationarity of precipitation

will be considered in the future projections, attempting to introduce

additional non-homogeneity into the emission distribution as sug-

gested in Holsclaw et al. (2017).
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