86 research outputs found
A Search for TeV Gamma-Ray Emission from High-Peaked Flat Spectrum Radio Quasars Using the Whipple Air-Cherenkov Telescope
Blazars have traditionally been separated into two broad categories based
upon their optical emission characteristics; BL Lacs, with faint or no emission
lines, and flat spectrum radio quasars (FSRQs) with prominent, broad emission
lines. The spectral energy distribution of FSRQs has generally been thought of
as being more akin to the low-peaked BL Lacs, which exhibit a peak in the
infrared region of the spectrum, as opposed to high-peaked BL Lacs (HBLs),
which exhibit a peak in UV/X-ray region of the spectrum. All blazars currently
confirmed as sources of TeV emission are HBLs. Recent surveys have found
several FSRQs exhibiting spectral properties similar to HBLs, particularly the
synchrotron peak frequency. These objects are potential sources of TeV emission
according to several models of blazar jet emission and blazar evolution.
Measurements of TeV flux or upper limits could impact existing theories
explaining the links between different blazar types and could have a
significant impact on our understanding of the nature of objects that are
capable of TeV emission. In particular, the presence (or absence) of TeV
emission from FSRQs could confirm (or cast doubt upon) recent evolutionary
models that expect intermediate objects in a transitionary state between FSRQ
and BL Lac. The Whipple 10 meter imaging air-Cherenkov gamma-ray telescope is
well suited for TeV gamma-ray observations. Using the Whipple telescope, we
have taken data on a small selection of nearby(z<0.1 in most cases),
high-peaked FSRQs. Although one of the objects, B2 0321+33, showed marginal
evidence of flaring, no significant emission was detected. The implications of
this paucity of emission and the derived upper limits are discussed.Comment: accepted for publication in Astrophysical Journa
VERITAS Observations of the gamma-Ray Binary LS I +61 303
LS I +61 303 is one of only a few high-mass X-ray binaries currently detected
at high significance in very high energy gamma-rays. The system was observed
over several orbital cycles (between September 2006 and February 2007) with the
VERITAS array of imaging air-Cherenkov telescopes. A signal of gamma-rays with
energies above 300 GeV is found with a statistical significance of 8.4 standard
deviations. The detected flux is measured to be strongly variable; the maximum
flux is found during most orbital cycles at apastron. The energy spectrum for
the period of maximum emission can be characterized by a power law with a
photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV
corresponding to 15-20% of the flux from the Crab Nebula.Comment: accepted for publication in The Astrophysical Journa
The First VERITAS Telescope
The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic
Radiation Imaging Telescope Array System) has been in operation since February
2005. We present here a technical description of the instrument and a summary
of its performance. The calibration methods are described, along with the
results of Monte Carlo simulations of the telescope and comparisons between
real and simulated data. The analysis of TeV -ray observations of the
Crab Nebula, including the reconstructed energy spectrum, is shown to give
results consistent with earlier measurements. The telescope is operating as
expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic
A connection between star formation activity and cosmic rays in the starburst galaxy M 82
Although Galactic cosmic rays (protons and nuclei) are widely believed to be
dominantly accelerated by the winds and supernovae of massive stars, definitive
evidence of this origin remains elusive nearly a century after their discovery
[1]. The active regions of starburst galaxies have exceptionally high rates of
star formation, and their large size, more than 50 times the diameter of
similar Galactic regions, uniquely enables reliable calorimetric measurements
of their potentially high cosmic-ray density [2]. The cosmic rays produced in
the formation, life, and death of their massive stars are expected to
eventually produce diffuse gamma-ray emission via their interactions with
interstellar gas and radiation. M 82, the prototype small starburst galaxy, is
predicted to be the brightest starburst galaxy in gamma rays [3, 4]. Here we
report the detection of >700 GeV gamma rays from M 82. From these data we
determine a cosmic-ray density of 250 eV cm-3 in the starburst core of M 82, or
about 500 times the average Galactic density. This result strongly supports
that cosmic-ray acceleration is tied to star formation activity, and that
supernovae and massive-star winds are the dominant accelerators.Comment: 18 pages, 4 figures; published in Nature; Version is prior to
Nature's in-house style editing (differences are minimal
Clinical ROC Studies of Digital Stereo Mammography
The objective of this study was to explore and document the diagnostic utility of digital stereo mammography for the detection of localized breast cancer in women. In it we characterized the ability of experienced mammographers, general radiologists, and non-radiologists to detect three types of tumor masses embedded within a heterogeneous background of normal tissue elements in numerically simulated digital mammograms. The simulated mammograms were displayed to the subjects on a high resolution video display, both in stereo mode and in mono mode. Half of the mammograms contained a single tumor, ranging from 0.3 to 0.8 cm in maximal diameter. Each reader rated 120 images (60 in stereo and 60 in mono) as to the probability of abnormality on scale of 1-5. Observer responses were evaluated using receiver operating characteristic (ROC) analysis to characterize any difference in diagnostic performance between the two viewing modes. The synthesized mammograms and the digital display were highly rated by the participant radiologists as promising tools for future research. The results of ROC analysis, however, indicated no significant difference in tumor detection when the same readers utilized the stereo mode versus the mono mode (Az mono = 0.833 versus, Az stereo = 0.826). The results were similar for readers of all 3 experience levels--mammographers, general radiologists, and non-radiologists
VERITAS: Status and Highlights
The VERITAS telescope array has been operating smoothly since 2007, and has
detected gamma-ray emission above 100 GeV from 40 astrophysical sources. These
include blazars, pulsar wind nebulae, supernova remnants, gamma-ray binary
systems, a starburst galaxy, a radio galaxy, the Crab pulsar, and gamma-ray
sources whose origin remains unidentified. In 2009, the array was reconfigured,
greatly improving the sensitivity. We summarize the current status of the
observatory, describe some of the scientific highlights since 2009, and outline
plans for the future.Comment: Presented at the 32nd ICRC, Beijing, 201
VERITAS Observations of a Very High Energy Gamma-ray Flare from the Blazar 3C 66A
The intermediate-frequency peaked BL Lacertae (IBL) object 3C 66A is detected
during 2007 - 2008 in VHE (very high energy: E > 100 GeV) gamma-rays with the
VERITAS stereoscopic array of imaging atmospheric Cherenkov telescopes. An
excess of 1791 events is detected, corresponding to a significance of 21.2
standard deviations (sigma), in these observations (32.8 hours live time). The
observed integral flux above 200 GeV is 6% of the Crab Nebula's flux and shows
evidence for variability on the time-scale of days. The measured energy
spectrum is characterized by a soft power law with photon index Gamma = 4.1 +-
0.4_stat +- 0.6_sys. The radio galaxy 3C 66B is excluded as a possible source
of the VHE emission.Comment: 13 Pages, 4 Figures. Published in ApJL. This new version correctly
calculates the intrinsic photon index (see Erratum: ApJL, 721:L203-L204
Perceived motion in structure from motion: Pointing responses to the axis of rotation
We investigated the ability to match finger orientation to the direction of the axis of rotation in structure-from-motion displays. Preliminary experiments verified that subjects could accurately use the index finger to report direction. The remainder of the experiments studied the perception of the axis of rotation from full rotations of a group of discrete points, the profiles of a rotating ellipsoid, and two views of a group of discrete points. Subjects' responses were analyzed by decomposing the pointing responses into their slant and tilt components. Overall, the results indicated that subjects were sensitive to both slant and tilt. However, when the axis of rotation was near the viewing direction, subjects had difficulty reporting tilt with profiles and two views and showed a large bias in their slant judgments with two views and full rotations. These results are not entirely consistent with theoretical predictions. The results, particularly for two views, suggest that additional constraints are used by humans in the recovery of structure from motion
- …
