2,472 research outputs found

    Towards a Living Lab for Enhanced Thermal Comfort and Air Quality: Analyses of Standard Occupancy, Weather Extremes, and COVID-19 Pandemic

    Get PDF
    Maintaining indoor environmental (IEQ) quality is a key priority in educational buildings. However, most studies rely on outdoor measurements or evaluate limited spatial coverage and time periods that focus on standard occupancy and environmental conditions which makes it hard to establish causality and resilience limits. To address this, a fine-grained, low-cost, multi-parameter IOT sensor network was deployed to fully depict the spatial heterogeneity and temporal variability of environmental quality in an educational building in Sydney. The building was particularly selected as it represents a multi-use university facility that relies on passive ventilation strategies, and therefore suitable for establishing a living lab for integrating innovative IoT sensing technologies. IEQ analyses focused on 15 months of measurements, spanning standard occupancy of the building as well as the Black Summer bushfires in 2019, and the COVID-19 lockdown. The role of room characteristics, room use, season, weather extremes, and occupancy levels were disclosed via statistical analysis including mutual information analysis of linear and non-linear correlations and used to generate site-specific re-design guidelines. Overall, we found that 1) passive ventilation systems based on manual interventions are most likely associated with sub-optimum environmental quality and extreme variability linked to occupancy patterns, 2) normally closed environments tend to get very unhealthy under periods of extreme pollution and intermittent/protracted disuse, 3) the elevation and floor level in addition to room use were found to be significant conditional variables in determining heat and pollutants accumulation, presumably due to the synergy between local sources and vertical transport mechanisms. Most IEQ inefficiencies and health threats could be likely mitigated by implementing automated controls and smart logics to maintain adequate cross ventilation, prioritizing building airtightness improvement, and appropriate filtration techniques. This study supports the need for continuous and capillary monitoring of different occupied spaces in educational buildings to compensate for less perceivable threats, identify the room for improvement, and move towards healthy and future-proof learning environments

    The Queen's College, Cork: its origins and early history, 1803-1858

    Get PDF
    This work examines the origins and early history of the Queen's College, Cork. Designedly there is as much stress on the origins as on the early history, for it is the contention of the work that the College was something more than a legislative mushroom. It was very much in the tradition of the civic universities which added an exciting new dimension to academic life in these islands in the nineteenth century. The first chapter surveys university practice and thinking at the opening of the century, relying exclusively on published sources. The second chapter is devoted specifically to the state of learning in Cork during the period, and makes extensive use of hitherto unpublished manuscript material in relation to the Royal Cork Institution. The third chapter deals with the highly significant evidence on education embodied in the Report of the Select Committee on Irish Education of 1838. This material has not previously been published. In chapter four an extended study is made of relevant letters in the manuscript correspondence of Sir Robert Peel - even the most recent authoritative biography has ignored this material. The remaining three chapters are devoted more specifically to the College, both in the formulation or policy and in its practical working. In chapter six there is an extended survey of early College life based exclusively on hitherto unpublished manuscript material in the College Archives. All of these sources, together with incidental published material, are set out at the end of each chapter

    Chemotaxonomic responses of autotrophic periphyton communities to nutrient additions in pools of an intermittent stream

    Get PDF
    1. The algal groups present in periphyton communities form an important base of autochthonous food webs in freshwater streams. Nitrogen (N) and phosphorus (P) are key macronutrients in aquatic systems. Excess nutrients benefit some algal groups over others. 2. We paired a nutrient-diffusing substrata limitation experiment with high performance liquid chromatography to (a) identify which nutrient(s) limit periphyton production, and (b) how the periphyton biomass and community structure changes between isolated pools of differing hydrological characteristics along an intermittent dryland stream. 3. Unique peaks for 21 pigments were identified and matched with published values. We then produced a PERMANOVA model using pigment ratios and CHEMTAX analysis to explore changes in community structure resulting from nutrient addition. 4. Periphyton communities in these pools were co-limited by N and P. Nitrogen additions caused the periphyton to shift from diatom- to chlorophyte-dominated community structure and benefited cyanophyta growth. Phosphorus additions reduced the relative proportion of diatoms and also resulted in an increase in pheophoribide-a, a pigment indicative of cell lysis, demonstrating a detrimental impact of P additions. 5. Outcomes of this study show that when adding nutrient to a system there may be subtle shifts in community composition which can be telescoped up the food web regardless of the system's nutrient status

    Phosphorus sorption characteristics and interactions with leaf litter‑derived dissolved organic matter leachate in iron‑rich sediments of a sub‑tropical ephemeral stream

    Get PDF
    This study investigated the infuence of dissolved organic matter (DOM) additions on phosphate sorption kinetics of iron-rich sediments (39–50% hematite and goethite) from an ephemeral stream in the arid Pilbara region of sub-tropical northwest Australia. While phosphate sorption in stream sediments is known to be strongly infuenced by sediment mineralogy as well as interactions with DOM, the mechanisms and signifcance of DOM on P-release from sediments with high sorption capacities, are largely undescribed. We assessed phosphorus (P) sorption behaviours by adding a range of solutions of known inorganic P concentrations that were amended with variable loadings of DOM derived from leachates of leaf litter to sediments from stream pools during the non-fowing phase. We compared the sorption capacity of the sediments and concurrent changes in DOM composition measured using fuorescence spectroscopy. We show that the low-dose DOM addition (~ 4 mg L−1 DOC) had the efect of reducing sediment P adsorption capacity, while for the high-dose DOM addition (~ 45 mg L−1 DOC), it was increased. The high-dose DOM was similar to pore water DOC and likely saturated sediment surface adsorption sites and produced P–OM–Fe complexes. This resulted in increased removal of P from solution. Sediment P sorption characteristics were well ftted to both Freundlich and Langmuir isotherm models regardless of DOC concentration. Langmuir P sorption maxima ranged from 0.106 to 0.152 mg g−1. General P sorption characteristics of these iron-rich sediments did not difer among pools of contrasting hydrological connectivity. Our results show how humic-rich DOM can modulate the sediment P availability in dryland streams. Unravelling the complexities of P availability is of particular significance to further our understanding of biogeochemical processes in aquatic ecosystems where P often acts as a limiting nutrient

    Dietary Methionine Restriction Regulates Liver Protein Synthesis and Gene Expression Independently of Eukaryotic Initiation Factor 2 Phosphorylation in Mice

    Get PDF
    Background: The phosphorylation of eukaryotic initiation factor 2 (p-eIF2) during dietary amino acid insufficiency reduces protein synthesis and alters gene expression via the integrated stress response (ISR).Objective: We explored whether a Met-restricted (MR) diet activates the ISR to reduce body fat and regulate protein balance.Methods: Male and female mice aged 3-6 mo with either whole-body deletion of general control nonderepressible 2 (Gcn2) or liver-specific deletion of protein kinase R-like endoplasmic reticulum kinase (Perk) alongside wild-type or floxed control mice were fed an obesogenic diet sufficient in Met (0.86%) or an MR (0.12% Met) diet for ≤5 wk. Ala enrichment with deuterium was measured to calculate protein synthesis rates. The guanine nucleotide exchange factor activity of eIF2B was measured alongside p-eIF2 and hepatic mRNA expression levels at 2 d and 5 wk. Metabolic phenotyping was conducted at 4 wk, and body composition was measured throughout. Results were evaluated with the use of ANOVA (P < 0.05).Results: Feeding an MR diet for 2 d did not increase hepatic p-eIF2 or reduce eIF2B activity in wild-type or Gcn2-/- mice, yet many genes transcriptionally regulated by the ISR were altered in both strains in the same direction and amplitude. Feeding an MR diet for 5 wk increased p-eIF2 and reduced eIF2B activity in wild-type but not Gcn2-/- mice, yet ISR-regulated genes altered in both strains similarly. Furthermore, the MR diet reduced mixed and cytosolic but not mitochondrial protein synthesis in both the liver and skeletal muscle regardless of Gcn2 status. Despite the similarities between strains, the MR diet did not increase energy expenditure or reduce body fat in Gcn2-/- mice. Finally, feeding the MR diet to mice with Perk deleted in the liver increased hepatic p-eIF2 and altered body composition similar to floxed controls.Conclusions: Hepatic activation of the ISR resulting from an MR diet does not require p-eIF2. Gcn2 status influences body fat loss but not protein balance when Met is restricted

    Visualizing climate change impact with ubiquitous spatial technologies

    Get PDF
    Copyright confirmation in progress. Any queries to [email protected] Ma

    Ethnic inequalities in mental health and socioeconomic status among older women living with HIV: results from the PRIME Study.

    Get PDF
    OBJECTIVES: Women living with HIV in the UK are an ethnically diverse group with significant psychosocial challenges. Increasing numbers are reaching older age. We describe psychological and socioeconomic factors among women with HIV in England aged 45-60 and explore associations with ethnicity. METHODS: Analysis of cross-sectional data on 724 women recruited to the PRIME Study. Psychological symptoms were measured using the Patient Health Questionnaire 4 and social isolation with a modified Duke-UNC Functional Social Support Scale. RESULTS: Black African (BA) women were more likely than Black Caribbean or White British (WB) women to have a university education (48.3%, 27.0%, 25.7%, respectively, p<0.001), but were not more likely to be employed (68.4%, 61.4%, 65.2%, p=0.56) and were less likely to have enough money to meet their basic needs (56.4%, 63.0%, 82.9%, p<0.001). BA women were less likely to report being diagnosed with depression than WB women (adjusted odds ratio (aOR) 0.40, p<0.001) but more likely to report current psychological distress (aOR 3.34, p<0.05). CONCLUSIONS: We report high levels of poverty, psychological distress and social isolation in this ethnically diverse group of midlife women with HIV, especially among those who were BA. Despite being more likely to experience psychological distress, BA women were less likely to have been diagnosed with depression suggesting a possible inequity in access to mental health services. Holistic HIV care requires awareness of the psychosocial needs of older women living with HIV, which may be more pronounced in racially minoritised communities, and prompt referral for support including psychology, peer support and advice about benefits
    • …
    corecore