147 research outputs found
DeepKSPD: Learning Kernel-matrix-based SPD Representation for Fine-grained Image Recognition
Being symmetric positive-definite (SPD), covariance matrix has traditionally
been used to represent a set of local descriptors in visual recognition. Recent
study shows that kernel matrix can give considerably better representation by
modelling the nonlinearity in the local descriptor set. Nevertheless, neither
the descriptors nor the kernel matrix is deeply learned. Worse, they are
considered separately, hindering the pursuit of an optimal SPD representation.
This work proposes a deep network that jointly learns local descriptors,
kernel-matrix-based SPD representation, and the classifier via an end-to-end
training process. We derive the derivatives for the mapping from a local
descriptor set to the SPD representation to carry out backpropagation. Also, we
exploit the Daleckii-Krein formula in operator theory to give a concise and
unified result on differentiating SPD matrix functions, including the matrix
logarithm to handle the Riemannian geometry of kernel matrix. Experiments not
only show the superiority of kernel-matrix-based SPD representation with deep
local descriptors, but also verify the advantage of the proposed deep network
in pursuing better SPD representations for fine-grained image recognition
tasks
Multi-scale Orderless Pooling of Deep Convolutional Activation Features
Deep convolutional neural networks (CNN) have shown their promise as a
universal representation for recognition. However, global CNN activations lack
geometric invariance, which limits their robustness for classification and
matching of highly variable scenes. To improve the invariance of CNN
activations without degrading their discriminative power, this paper presents a
simple but effective scheme called multi-scale orderless pooling (MOP-CNN).
This scheme extracts CNN activations for local patches at multiple scale
levels, performs orderless VLAD pooling of these activations at each level
separately, and concatenates the result. The resulting MOP-CNN representation
can be used as a generic feature for either supervised or unsupervised
recognition tasks, from image classification to instance-level retrieval; it
consistently outperforms global CNN activations without requiring any joint
training of prediction layers for a particular target dataset. In absolute
terms, it achieves state-of-the-art results on the challenging SUN397 and MIT
Indoor Scenes classification datasets, and competitive results on
ILSVRC2012/2013 classification and INRIA Holidays retrieval datasets
Distance-Based Image Classification: Generalizing to New Classes at Near Zero Cost
International audienceWe study large-scale image classification methods that can incorporate new classes and training images continuously over time at negligible cost. To this end we consider two distance-based classifiers, the k-nearest neighbor (k-NN) and nearest class mean (NCM) classifiers, and introduce a new metric learning approach for the latter. We also introduce an extension of the NCM classifier to allow for richer class representations. Experiments on the ImageNet 2010 challenge dataset, which contains over 106 training images of 1,000 classes, show that, surprisingly, the NCM classifier compares favorably to the more flexible k-NN classifier. Moreover, the NCM performance is comparable to that of linear SVMs which obtain current state-of-the-art performance. Experimentally we study the generalization performance to classes that were not used to learn the metrics. Using a metric learned on 1,000 classes, we show results for the ImageNet-10K dataset which contains 10,000 classes, and obtain performance that is competitive with the current state-of-the-art, while being orders of magnitude faster. Furthermore, we show how a zero-shot class prior based on the ImageNet hierarchy can improve performance when few training images are available
Image Classification with the Fisher Vector: Theory and Practice
A standard approach to describe an image for classification and retrieval purposes is to extract a set of local patch descriptors, encode them into a high dimensional vector and pool them into an image-level signature. The most common patch encoding strategy consists in quantizing the local descriptors into a finite set of prototypical elements. This leads to the popular Bag-of-Visual words (BOV) representation. In this work, we propose to use the Fisher Kernel framework as an alternative patch encoding strategy: we describe patches by their deviation from an ''universal'' generative Gaussian mixture model. This representation, which we call Fisher Vector (FV) has many advantages: it is efficient to compute, it leads to excellent results even with efficient linear classifiers, and it can be compressed with a minimal loss of accuracy using product quantization. We report experimental results on five standard datasets -- PASCAL VOC 2007, Caltech 256, SUN 397, ILSVRC 2010 and ImageNet10K -- with up to 9M images and 10K classes, showing that the FV framework is a state-of-the-art patch encoding technique
Interferences in match kernels
We consider the design of an image representation that embeds and aggregates a set of local descriptors into a single vector. Popular representations of this kind include the bag-of-visual-words, the Fisher vector and the VLAD. When two such image representations are compared with the dot-product, the image-to-image similarity can be interpreted as a match kernel. In match kernels, one has to deal with interference, i.e., with the fact that even if two descriptors are unrelated, their matching score may contribute to the overall similarity. We formalise this problem and propose two related solutions, both aimed at equalising the individual contributions of the local descriptors in the final representation. These methods modify the aggregation stage by including a set of per-descriptor weights. They differ by the objective function that is optimised to compute those weights. The first is a "democratisation" strategy that aims at equalising the relative importance of each descriptor in the set comparison metric. The second one involves equalising the match of a single descriptor to the aggregated vector. These concurrent methods give a substantial performance boost over the state of the art in image search with short or mid-size vectors, as demonstrated by our experiments on standard public image retrieval benchmarks
Efficient On-the-fly Category Retrieval using ConvNets and GPUs
We investigate the gains in precision and speed, that can be obtained by
using Convolutional Networks (ConvNets) for on-the-fly retrieval - where
classifiers are learnt at run time for a textual query from downloaded images,
and used to rank large image or video datasets.
We make three contributions: (i) we present an evaluation of state-of-the-art
image representations for object category retrieval over standard benchmark
datasets containing 1M+ images; (ii) we show that ConvNets can be used to
obtain features which are incredibly performant, and yet much lower dimensional
than previous state-of-the-art image representations, and that their
dimensionality can be reduced further without loss in performance by
compression using product quantization or binarization. Consequently, features
with the state-of-the-art performance on large-scale datasets of millions of
images can fit in the memory of even a commodity GPU card; (iii) we show that
an SVM classifier can be learnt within a ConvNet framework on a GPU in parallel
with downloading the new training images, allowing for a continuous refinement
of the model as more images become available, and simultaneous training and
ranking. The outcome is an on-the-fly system that significantly outperforms its
predecessors in terms of: precision of retrieval, memory requirements, and
speed, facilitating accurate on-the-fly learning and ranking in under a second
on a single GPU.Comment: Published in proceedings of ACCV 201
Cross-dimensional Weighting for Aggregated Deep Convolutional Features
We propose a simple and straightforward way of creating powerful image
representations via cross-dimensional weighting and aggregation of deep
convolutional neural network layer outputs. We first present a generalized
framework that encompasses a broad family of approaches and includes
cross-dimensional pooling and weighting steps. We then propose specific
non-parametric schemes for both spatial- and channel-wise weighting that boost
the effect of highly active spatial responses and at the same time regulate
burstiness effects. We experiment on different public datasets for image search
and show that our approach outperforms the current state-of-the-art for
approaches based on pre-trained networks. We also provide an easy-to-use, open
source implementation that reproduces our results.Comment: Accepted for publications at the 4th Workshop on Web-scale Vision and
Social Media (VSM), ECCV 201
Statistically Motivated Second Order Pooling
Second-order pooling, a.k.a.~bilinear pooling, has proven effective for deep
learning based visual recognition. However, the resulting second-order networks
yield a final representation that is orders of magnitude larger than that of
standard, first-order ones, making them memory-intensive and cumbersome to
deploy. Here, we introduce a general, parametric compression strategy that can
produce more compact representations than existing compression techniques, yet
outperform both compressed and uncompressed second-order models. Our approach
is motivated by a statistical analysis of the network's activations, relying on
operations that lead to a Gaussian-distributed final representation, as
inherently used by first-order deep networks. As evidenced by our experiments,
this lets us outperform the state-of-the-art first-order and second-order
models on several benchmark recognition datasets.Comment: Accepted to ECCV 2018. Camera ready version. 14 page, 5 figures, 3
table
VPN: Learning Video-Pose Embedding for Activities of Daily Living
In this paper, we focus on the spatio-temporal aspect of recognizing
Activities of Daily Living (ADL). ADL have two specific properties (i) subtle
spatio-temporal patterns and (ii) similar visual patterns varying with time.
Therefore, ADL may look very similar and often necessitate to look at their
fine-grained details to distinguish them. Because the recent spatio-temporal 3D
ConvNets are too rigid to capture the subtle visual patterns across an action,
we propose a novel Video-Pose Network: VPN. The 2 key components of this VPN
are a spatial embedding and an attention network. The spatial embedding
projects the 3D poses and RGB cues in a common semantic space. This enables the
action recognition framework to learn better spatio-temporal features
exploiting both modalities. In order to discriminate similar actions, the
attention network provides two functionalities - (i) an end-to-end learnable
pose backbone exploiting the topology of human body, and (ii) a coupler to
provide joint spatio-temporal attention weights across a video. Experiments
show that VPN outperforms the state-of-the-art results for action
classification on a large scale human activity dataset: NTU-RGB+D 120, its
subset NTU-RGB+D 60, a real-world challenging human activity dataset: Toyota
Smarthome and a small scale human-object interaction dataset Northwestern UCLA.Comment: Accepted in ECCV 202
Unsupervised Learning of Video Representations via Dense Trajectory Clustering
This paper addresses the task of unsupervised learning of representations for
action recognition in videos. Previous works proposed to utilize future
prediction, or other domain-specific objectives to train a network, but
achieved only limited success. In contrast, in the relevant field of image
representation learning, simpler, discrimination-based methods have recently
bridged the gap to fully-supervised performance. We first propose to adapt two
top performing objectives in this class - instance recognition and local
aggregation, to the video domain. In particular, the latter approach iterates
between clustering the videos in the feature space of a network and updating it
to respect the cluster with a non-parametric classification loss. We observe
promising performance, but qualitative analysis shows that the learned
representations fail to capture motion patterns, grouping the videos based on
appearance. To mitigate this issue, we turn to the heuristic-based IDT
descriptors, that were manually designed to encode motion patterns in videos.
We form the clusters in the IDT space, using these descriptors as a an
unsupervised prior in the iterative local aggregation algorithm. Our
experiments demonstrates that this approach outperform prior work on UCF101 and
HMDB51 action recognition benchmarks. We also qualitatively analyze the learned
representations and show that they successfully capture video dynamics
- …