7 research outputs found

    Legislative Documents

    No full text
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    vt_sup_all_introgressions.txt

    No full text
    This file contains somatic translocation positions inferred from a population of 95 dihaploid potato (Solanum tuberosum) lines derived from a cross between the cultivar Superior and the haploid inducer line IVP101. The columns contain the following information: CHROM: chromosome, POS: physical position, REF: reference allele, ALT: alternate allele, QUAL: SNP quality, superior_gdna.AD: Superior allele counts, ivp_101.AD: IVP101 allele counts, line: Superior dihaploid line, alleles: Superior dihaploid allele

    Data from: Genome-wide inference of somatic translocation events during potato dihaploid production

    No full text
    Potato (Solanum tuberosum L.) breeders often use dihaploids, which are 2× progeny derived from 4× autotetraploid parents. Dihaploids can be used in diploid crosses to introduce new genetic material into breeding germplasm that can be integrated into tetraploid breeding through the use of unreduced gametes in 4× by 2× crosses. Dihaploid potatoes are usually produced via pollination by haploid inducer lines known as in vitro pollinators (IVP). In vitro pollinator chromosomes are selectively degraded from initially full hybrid embryos, resulting in 2× seed. During this process, somatic translocation of IVP DNA may occur. In this study, a genome-wide approach was used to identify such events and other chromosome-scale abnormalities in a population of 95 dihaploids derived from a cross between potato cultivar Superior and the haploid inducing line IVP101. Most Superior dihaploids showed translocation rates of <1% at 16,947,718 assayable sites, yet two dihaploids showed translocation rates of 1.86 and 1.60%. Allelic ratios at translocation sites suggested that most translocations occurred in individual cell lineages and were thus not present in all cells of the adult plants. Translocations were enriched in sites associated with high gene expression and H3K4 dimethylation and H4K5 acetylation, suggesting that they tend to occur in regions of open chromatin. The translocations likely result as a consequence of double-stranded break repair in the dihaploid genomes via homologous recombination during which IVP chromosomes are used as templates. Additionally, primary trisomy was observed in eight individuals. As the trisomic chromosomes were derived from Superior, meiotic nondisjunction may be common in potato

    Image_1_Genome Reduction in Tetraploid Potato Reveals Genetic Load, Haplotype Variation, and Loci Associated With Agronomic Traits.PDF

    No full text
    <p>The cultivated potato (Solanum tuberosum) has a complex genetic structure due to its autotetraploidy and vegetative propagation which leads to accumulation of mutations and a highly heterozygous genome. A high degree of heterozygosity has been considered to be the main driver of fitness and agronomic trait performance in potato improvement efforts, which is negatively impacted by genetic load. To understand the genetic landscape of cultivated potato, we constructed a gynogenic dihaploid (2n = 2x = 24) population from cv. Superior, prior to development of a high-density genetic map containing 12,753 single nucleotide polymorphisms (SNPs). Common quantitative trait loci (QTL) were identified for tuber traits, vigor and height on chromosomes 2, 4, 7, and 10, while specific QTL for number of inflorescences per plant, and tuber shape were present on chromosomes 4, 6, 10, and 11. Simplex rather than duplex loci were mainly associated with traits. In general, the Q allele (main effect) detected in one or two homologous chromosomes was associated with lower mean trait values suggesting the importance of dosage allelic effects, and the presence of up to two undesired alleles in the QTL region. Loss of heterozygosity has been associated with a lower rate of fitness, yet no correlation between the percent heterozygosity and increased fitness or agronomic performance was observed. Based upon linkage phase, we reconstructed the four homologous chromosome haplotypes of cv. Superior. revealing heterogeneity throughout the genome yet nearly duplicate haplotypes occurring among the homologs of particular chromosomes. These results suggest that the potentially deleterious mutations associated with genetic load in tetraploid potato could be mitigated by multiple loci which is consistent with the theory that epistasis complicates the identification of associations between markers and phenotypic performance.</p
    corecore