800 research outputs found

    Characterizing the nature of Fossil Groups with XMM

    Full text link
    We present an X-ray follow-up, based on XMM plus Chandra, of six Fossil Group (FG) candidates identified in our previous work using SDSS and RASS data. Four candidates (out of six) exhibit extended X-ray emission, confirming them as true FGs. For the other two groups, the RASS emission has its origin as either an optically dull/X-ray bright AGN, or the blending of distinct X-ray sources. Using SDSS-DR7 data, we confirm, for all groups, the presence of an r-band magnitude gap between the seed elliptical and the second-rank galaxy. However, the gap value depends, up to 0.5mag, on how one estimates the seed galaxy total flux, which is greatly underestimated when using SDSS (relative to Sersic) magnitudes. This implies that many FGs may be actually missed when using SDSS data, a fact that should be carefully taken into account when comparing the observed number densities of FGs to the expectations from cosmological simulations. The similarity in the properties of seed--FG and non-fossil ellipticals, found in our previous study, extends to the sample of X-ray confirmed FGs, indicating that bright ellipticals in FGs do not represent a distinct population of galaxies. For one system, we also find that the velocity distribution of faint galaxies is bimodal, possibly showing that the system formed through the merging of two groups. This undermines the idea that all selected FGs form a population of true fossils.Comment: 9 pages, 3 figures. Submitted 01/12/2011 to MNRAS, referee report received 21/02/2012, accepted 22/02/201

    A nearly zero-energy microgrid testbed laboratory: Centralized control strategy based on SCADA system

    Get PDF
    Currently, despite the use of renewable energy sources (RESs), distribution networks are facing problems, such as complexity and low productivity. Emerging microgrids (MGs) with RESs based on supervisory control and data acquisition (SCADA) are an effective solution to control, manage, and finally deal with these challenges. The development and success of MGs is highly dependent on the use of power electronic interfaces. The use of these interfaces is directly related to the progress of SCADA systems and communication infrastructures. The use of SCADA systems for the control and operation of MGs and active distribution networks promotes productivity and efficiency. This paper presents a real MG case study called the LAMBDA MG testbed laboratory, which has been implemented in the electrical department of the Sapienza University of Rome with a centralized energy management system (CEMS). The real-time results of the SCADA system show that a CEMS can create proper energy balance in a LAMBDA MG testbed and, consequently, minimize the exchange power of the LAMBDA MG and main grid

    WATCAT: a tale of wide-angle tailed radio galaxies

    Full text link
    We present a catalog of 47 wide-angle tailed radio galaxies (WATs), the WATCAT; these galaxies were selected by combining observations from the National Radio Astronomy Observatory/Very Large Array Sky Survey (NVSS), the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST), and the Sloan Digital Sky Survey (SDSS), and mainly built including a radio morphological classification. We included in the catalog only radio sources showing two-sided jets with two clear "warmspots" (i.e., jet knots as bright as 20% of the nucleus) lying on the opposite side of the radio core, and having classical extended emission resembling a plume beyond them. The catalog is limited to redshifts z \leq 0.15, and lists only sources with radio emission extended beyond 30 kpc from the host galaxy. We found that host galaxies of WATCAT sources are all luminous (-20.5 \gtrsim Mr \gtrsim -23.7), red early-type galaxies with black hole masses in the range 10810^8\lesssim MBH109_{\rm BH} \lesssim 10^9 M_\odot. The spectroscopic classification indicates that they are all low-excitation galaxies (LEGs). Comparing WAT multifrequency properties with those of FRI and FRII radio galaxies at the same redshifts, we conclude that WATs show multifrequency properties remarkably similar to FRI radio galaxies, having radio power of typical FRIIs

    The XMM deep survey in the CDF-S. X. X-ray variability of bright sources

    Full text link
    We aim to study the variability properties of bright hard X-ray selected Active Galactic Nuclei (AGN) with redshift between 0.3 and 1.6 detected in the Chandra Deep Field South (XMM-CDFS) by a long XMM observation. Taking advantage of the good count statistics in the XMM CDFS we search for flux and spectral variability using the hardness ratio techniques. We also investigated spectral variability of different spectral components. The spectra were merged in six epochs (defined as adjacent observations) and in high and low flux states to understand whether the flux transitions are accompanied by spectral changes. The flux variability is significant in all the sources investigated. The hardness ratios in general are not as variable as the fluxes. Only one source displays a variable HR, anti-correlated with the flux (source 337). The spectral analysis in the available epochs confirms the steeper when brighter trend consistent with Comptonisation models only in this source. Finding this trend in one out of seven unabsorbed sources is consistent, within the statistical limits, with the 15 % of unabsorbed AGN in previous deep surveys. No significant variability in the column densities, nor in the Compton reflection component, has been detected across the epochs considered. The high and low states display in general different normalisations but consistent spectral properties. X-ray flux fluctuations are ubiquitous in AGN. In general, the significant flux variations are not associated with a spectral variability: photon index and column densities are not significantly variable in nine out of the ten AGN over long timescales (from 3 to 6.5 years). The photon index variability is found only in one source (which is steeper when brighter) out of seven unabsorbed AGN. These results are consistent with previous deep samples.Comment: 14 pages, 11 figures. Accepted in A&

    Individual optical variability of Active Galactic Nuclei from the MEXSAS2 sample

    Get PDF
    Most of the variability studies of active galactic nuclei (AGNs) are based on ensemble analyses. Nevertheless, it is interesting to provide estimates of the individual variability properties of each AGN, in order to relate them with intrinsic physical quantities. A useful dataset is provided by the Catalina Surveys Data Release 2 (CSDR2), which encompasses almost a decade of photometric measurements of 500\sim500 million objects repeatedly observed hundreds of times. We aim to investigate the individual optical variability properties of 795 AGNs originally included in the Multi-Epoch XMM Serendipitous AGN Sample 2 (MEXSAS2). Our goals consist in: (i) searching for correlations between variability and AGN physical quantities; (ii) extending our knowledge of the variability features of MEXSAS2 from the X-ray to the optical. We use the structure function (SF) to analyse AGN flux variations. We model the SF as a power-law, SF(τ)=A(τ/τ0)γ\text{SF}(\tau)=A\,(\tau/\tau_0)^\gamma, and we compute its variability parameters. We introduce the V-correction as a simple tool to correctly quantify the amount of variability in the rest frame of each source. We find a significant decrease of variability amplitude with increasing bolometric, optical and X-ray luminosity. We obtain the indication of an intrinsically weak positive correlation between variability amplitude and redshift, zz. Variability amplitude is also positively correlated with αox\alpha_\text{ox}. The slope of the SF, γ\gamma, is weakly correlated with the bolometric luminosity LbolL_\text{bol} and/or with the black hole mass MBHM_\text{BH}. When comparing optical to X-ray variability properties, we find that X-ray variability amplitude is approximately the same for those AGNs with larger or smaller variability amplitude in the optical. On the contrary, AGNs with steeper SF in the optical do present steeper SF in the X-ray, and vice versa.Comment: 13 pages, 14 figures, 3 tables, accepted for publication in MNRA

    Diachronic and Synchronic Analysis for Knowledge Creation: Architectural Representation Geared to XR Building Archaeology (Claudius-Anio Novus Aqueduct in Tor Fiscale, the Appia Antica Archaeological Park)

    Get PDF
    This study summarises research progress to identify appropriate quality methodologies for representing, interpreting, and modelling complex contexts such as the Claudian Aqueduct in the Appian Way Archaeological Park. The goal is to intrinsically integrate (embed) geometric survey (Laser scanning and photogrammetric) with the materials and construction techniques (Stratigraphic Units-SU), semantic models in order to support the design with a better understanding of the artefact considered, and also to give indications that can be implemented in the future in a continuous cognitive process. Volume stratigraphic units in the form of architectural drawings, heritage building information modelling (HBIM) and extended reality (XR) environments have been oriented to comparative analyses based on the research case study's complex morphology. Analysis of geometries' intersection, construction techniques and materials open up new cognitive scenarios, self-feeding a progressive knowledge and making different studies correlatable, avoiding diaspora or incommunicability. Finally, an extended reality (XR) platform aims to enhance tangible and intangible values through new human-computer interaction and information sharing levels

    Demography of obscured and unobscured AGN: prospects for a Wide Field X-ray Telescope

    Full text link
    We discuss some of the main open issues in the evolution of Active Galactic Nuclei which can be solved by the sensitive, wide area surveys to be performed by the proposed Wide Field X-ray Telescope mission.Comment: Proceedings of "The Wide Field X-ray Telescope Workshop", held in Bologna, Italy, Nov. 25-26 2009. To appear in Memorie della Societa' Astronomica Italiana 2010 (arXiv:1010.5889

    Spinal motoneurons of the human newborn are highly synchronized during leg movements

    Get PDF
    Motoneurons of neonatal rodents show synchronous activity that modulates the development of the neuromuscular system. However, the characteristics of the activity of human neonatal motoneurons are largely unknown. Using a noninvasive neural interface, we identified the discharge timings of individual spinal motoneurons in human newborns. We found highly synchronized activities of motoneurons of the tibialis anterior muscle, which were associated with fast leg movements. Although neonates' motor units exhibited discharge rates similar to those of adults, their synchronization was significantly greater than in adults. Moreover, neonatal motor units showed coherent oscillations in the delta band, which is directly translated into force generation. These results suggest that motoneuron synchronization in human neonates might be an important mechanism for controlling fast limb movements, such as those of primitive reflexes. In addition to help revealing mechanisms of development, the proposed neural interface might monitor children at risk of developing motor disorders

    The connection between star formation and supermassive Black Hole activity in the local Universe

    Get PDF
    We present a study of the active galactic nucleus (AGN) activity in the local Universe (z < 0.33) and its correlation with the host galaxy properties, derived from a Sloan Digital Sky Survey (SDSS DR8) sample with spectroscopic star-formation rate (SFR) and stellar mass (M\mathcal{M}_{\ast}) determination. To quantify the level of AGN activity we used X-ray information from the XMM-Newton Serendipitous Source Catalogue (3XMM DR8). Applying multiwavelength AGN selection criteria (optical BPT-diagrams, X-ray/optical ratio etc) we found that 24% of the detected sources are efficiently-accreting AGN with moderate-to-high X-ray luminosity, which are twice as likely to be hosted by star-forming galaxies than by quiescent ones. The distribution of the specific Black Hole accretion rate (sBHAR, λsBHAR\lambda_{\mathrm{sBHAR}}) shows that nuclear activity in local, non-AGN dominated galaxies peaks at very low accretion rates (4logλsBHAR3-4 \lesssim \log\lambda_{\mathrm{sBHAR}} \lesssim -3) in all stellar mass ranges. However, we observe systematically larger values of sBHAR for galaxies with active star-formation than for quiescent ones, as well as an increase of the mean λsBHAR\lambda_{\mathrm{sBHAR}} with SFR for both star-forming and quiescent galaxies. These findings confirm the decreased level of AGN activity with cosmic time and are consistent with a scenario where both star-formation and AGN activity are fuelled by a common gas reservoir.Comment: 20 pages, 20 figures, accepted for publication in MNRA
    corecore