51 research outputs found

    A model theory for the fibrous absorber. Part 1: Regular fibre arrangements

    Get PDF
    The axial propagation of sound waves in a model consisting of parallel fibers is calculated. The viscous forces and the thermal conduction are taken into account. This leads to viscous waves and to thermal waves besides the usual acoustic compression wave. The potential function for the total field near a fiber is treated as the superposition of the radiated field from the fiber itself and of the scattered fields from all the other fibers. The explicit field equations for a regular square fiber arrangement is derived and the influence of the order of symmetry of the arrangement is discussed. This leads to simplifications in the field equations and to field equations for the case of a homogeneous fiber distribution

    Mode-matching without root-finding: Application to a dissipative silencer

    Get PDF
    This article presents an analytic mode-matching approach suitable for modelling the propagation of sound in a two-dimensional, three-part, ducting system. The approach avoids the need to the find roots of the characteristic equation for the middle section of the duct (the component) and is readily applicable to a broad class of problems. It is demonstrated that the system of equations, derived via analytic mode-matching, exhibits certain features which ensure that they can be re-cast into a form that is independent of the roots of the characteristic equation for the component. The precise details of the component are irrelevant to the procedure; it is required only that there exists an orthogonality relation, or similar, for the eigenmodes corresponding to the propagating wave-forms in this region. The method is applied here to a simple problem involving acoustic transmission through a dissipative silencer of the type commonly found in heating ventilation and air-conditioning (HVAC) ducts. With reference to this example, the silencer transmission loss is computed, and the power balance for the silencer is investigated and is shown to be an identity that is necessarily satisfied by the system of equations, regardless of the level of truncation

    On tuning a reactive silencer by varying the position of an internal membrane

    Get PDF
    A mode-matching method is used to investigate the performance of a two-dimensional, modified reactive silencer. The modification takes the form of a membrane which is attached to the internal walls of the expansion chamber parallel to the axis of the inlet/outlet ducts. The height of the membrane above the level of the inlet/outlet ducts can be varied and, by this means, the device is tuned. It is shown that the stopband produced by the silencer can be broadened and/or shifted depending upon the height to which the membrane is raised. Attention is focused on the efficiency of the device at low-frequencies - the regime where dissipative silencers are usually least effective. The potential use of the device as a component in a hybrid silencer for heating ventilation and air-conditioning (HVAC) ducting systems is discussed

    The influence of baffle fairings on the acoustic performance of rectangular splitter silencers

    Get PDF
    A numerical model based on the finite element method is developed for a finite length, HVAC splitter silencer. The model includes an arbitrary number of bulk-reacting splitters separated from the airway by a thin perforated metal sheet and accommodates higher order modes in the incident sound field. Each perforated sheet is joined to rigid, impervious, metallic fairing situated at either end of a splitter. The transmission loss for the silencer is quantified by application of the point collocation technique, and predictions are compared to experimental measurements reported in the literature. The splitter fairing is shown to significantly affect silencer performance, especially when higher order incident modes are present. It is concluded that laboratory measurements, and theoretical predictions, that are based on a predominantly plane wave sound source are unlikely to reflect accurately the true performance of an HVAC silencer in a real ducting system

    Quasi-perfect absorption by sub-wavelength acoustic panels in transmission using accumulation of resonances due to slow sound

    Full text link
    [EN] We theoretically and experimentally report sub-wavelength resonant panels for low-frequency quasi-perfect sound absorption including transmission by using the accumulation of cavity resonances due to the slow sound phenomenon. The sub-wavelength panel is composed of periodic horizontal slits loaded by identical Helmholtz resonators (HRs). Due to the presence of the HRs, the propagation inside each slit is strongly dispersive, with near-zero phase velocity close to the resonance of the HRs. In this slow sound regime, the frequencies of the cavity modes inside the slit are down-shifted and the slit behaves as a subwavelength resonator. Moreover, due to strong dispersion, the cavity resonances accumulate at the limit of the bandgap below the resonance frequency of the HRs. Near this accumulation frequency, simultaneously symmetric and antisymmetric quasi-critical coupling can be achieved. In this way, using only monopolar resonators quasi-perfect absorption can be obtained in a material including transmission.This work has been funded by the Metaudible Project No. ANR-13-BS09-0003, cofunded by ANR and FRAE.Jimenez, N.; Romero GarcĂ­a, V.; Pagneux, V.; Groby, J. (2017). Quasi-perfect absorption by sub-wavelength acoustic panels in transmission using accumulation of resonances due to slow sound. PHYSICAL REVIEW B-CONDENSED MATTER. 95(1). doi:10.1103/PhysRevB.95.014205S01420595

    Metadiffusers : deep-subwavelength sound diffusers

    Get PDF
    We present deep-subwavelength diffusing surfaces based on acoustic metamaterials, namely metadiffusers. These sound diffusers are rigidly backed slotted panels, with each slit being loaded by an array of Helmholtz resonators. Strong dispersion is produced in the slits and slow sound conditions are induced. Thus, the effective thickness of the panel is lengthened introducing its quarter wavelength resonance in the deep-subwavelength regime. By tuning the geometry of the metamaterial, the reflection coefficient of the panel can be tailored to obtain either a custom reflection phase, moderate or even perfect absorption. Using these concepts, we present ultra-thin diffusers where the geometry of the metadiffuser has been tuned to obtain surfaces with spatially dependent reflection coefficients having uniform magnitude Fourier transforms. Various designs are presented where, quadratic residue, primitive root and ternary sequence diffusers are mimicked by metadiffusers whose thickness are 1/46 to 1/20 times the design wavelength, i.e., between about a twentieth and a tenth of the thickness of traditional designs. Finally, a broadband metadiffuser panel of 3 cm thick was designed using optimization methods for frequencies ranging from 250 Hz to 2 kHz
    • …
    corecore