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ABSTRACT 

 

A numerical model based on the finite element method is developed for a finite length, HVAC 

splitter silencer.  The model includes an arbitrary number of bulk-reacting splitters separated 

from the airway by a thin perforated metal sheet and accommodates higher order modes in the 

incident sound field.  Each perforated sheet is joined to rigid, impervious, metallic fairing 

situated at either end of a splitter.  The transmission loss for the silencer is quantified by 

application of the point collocation technique, and predictions are compared to experimental 

measurements reported in the literature.  The splitter fairing is shown to significantly affect 

silencer performance, especially when higher order incident modes are present.  It is concluded 

that laboratory measurements, and theoretical predictions, that are based on a predominantly 

plane wave sound source are unlikely to reflect accurately the true performance of an HVAC 

silencer in a real ducting system. 
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I.  INTRODUCTION 

 

Dissipative silencers are commonly used in HVAC ducts to attenuate broadband noise emanating 

from an air moving device such as a fan.  HVAC ducts commonly have a rectangular 

crosssection and a silencer made up of a number of parallel splitters.  Each splitter normally 

consists of a bulk reacting porous material separated from the airway by a thin, perforated, metal 

sheet.  Each perforated sheet is joined to metallic fairing at either end of the splitter (see Fig. 1).  

This helps to maintain the dimensional stability of a splitter, but also to channel airflow between 

each splitter, lowering the static air pressure loss across the silencer.  Each section of fairing will, 

however, also affect the propagation of sound through the silencer by modifying the acoustic end 

correction at the inlet and outlet planes of the silencer.  The influence of this fairing on the 

overall performance of a splitter silencer has largely been ignored in the literature, and so the aim 

of this paper is to investigate the effect of splitter fairing on HVAC silencer performance. 

 

The effect on silencer performance of splitter fairing is normally assumed to be negligible.  

Moreover, the majority of theoretical studies on HVAC splitters are limited to computing modal 

attenuation in an infinite duct.  For example, Cummings [1] quantified the attenuation of the first 

few least attenuated modes in a rectangular duct lined on opposite walls; Bies et al. [2] report 

general design curves for rectangular ducts lined on opposite walls, computed using the least 

attenuated mode; and Kakoty and Roy [3] examined infinite rectangular ducts lined on all four 

walls.  The methods of Cummings and Sormaz [4], and Astley and Cummings [5], are both 

capable of examining a large number of higher-order modes in a silencer that contains an 

arbitrary number of splitters, although both techniques are, again, restricted to infinite ducts.   
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Computing only modal attenuation suppresses the effects of acoustic scattering at either end of a 

silencer.  To date, attempts to quantify end effects for bulk reacting HVAC silencers have been 

restricted to the specification of simplistic end correction factors.  For example, Ramakrishnan 

and Watson [6] derive heuristic end correction factors by summing the decay rate of individual 

modes; Ramakrishnan and Stevens [7] use an expression developed by Beranek [8] for a plane 

wave expansion chamber; and Brandstätt et al. [9] generate transmission loss curves by 

comparing predicted modal attenuation with a large number of experimental measurements.  

Clearly, these methods do not fully characterise silencer end effects, nor are they likely to be 

applicable over a wide range of silencer parameters, including a silencer with a large number of 

splitters.  In fact, end effects for bulk reacting splitter silencers have only recently been 

quantified by Kirby and Lawrie [10], who demonstrated excellent agreement between numerical 

point collocation predictions and those found using an exact analytic approach.  Kirby and 

Lawrie studied large HVAC silencers but the results were restricted to three splitters, and the 

effects of a perforate and splitter fairing were omitted.  The addition of splitter fairing for a bulk 

reacting material has yet to be considered, although Mechel [11, 12] did include fairings in a 

study of locally reacting splitters.  The assumption of a locally reacting absorbent does, however, 

reduce the applicability of Mechel’s technique, as it assumes either a relatively thin splitter, 

when compared to the overall duct dimensions, or a porous material of very high flow resistivity: 

neither case is likely to exist in most splitter silencer applications. 

 

A numerical model aimed at quantifying the acoustic performance of a finite length splitter 

silencer is presented here.  Included are the effects of a perforated sheet separating a bulk 
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reacting material from the airway, an impervious fairing at either end of a splitter, and an 

arbitrary number of splitters making up the silencer.  The silencer is assumed to have a uniform 

cross-section and the effects of mean flow are neglected.  To accommodate relatively large 

HVAC ducts, which are common in practice, a multi-modal sound field is chosen to excite the 

silencer.  The effects of the splitter fairing are quantified by comparison with transmission loss 

predictions reported by Kirby and Lawrie [10] (who omit splitter end baffles), and with 

experimental results reported by Mechel [12].  The effects of varying both the porosity of the 

perforate, and the properties of the bulk reacting porous material, are also investigated. 

 

II.  THEORY 

 

The analysis proceeds by assuming that the acoustic fields in the inlet/outlet ducts, and also the 

silencer section, may be expanded as an infinite sum over the duct/silencer eigenmodes.  On 

finding the duct/silencer eigenfunctions and associated wave numbers, the modal amplitudes 

may be computed by application of the axial matching conditions, after suitable truncation of 

each modal sum.  A numerical approach similar to the one described by Kirby [13], and Kirby 

and Lawrie [10], is adopted here and so, after introducing the duct geometry and governing wave 

equations, a finite element eigenvalue analysis is described; this is followed by a point 

collocation scheme that seeks to fulfil the axial continuity conditions. 

 

A.  Geometry and governing equations 

An arbitrary number of bulk reacting splitters are shown in Fig. 1.  A multi-mode sound source, 

propagating in the positive x direction in region R1, is used to excite the silencer.  The duct is 
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terminated anechoically in region R4.  The duct walls in regions R1 and R4 are assumed to be rigid 

and impervious to sound.  Each splitter has a length L and is terminated at 0=x , and Lx = , by a 

metallic fairing that is assumed to be rigid and impervious to sound propagation, and also of 

negligible thickness when compared to the overall silencer dimensions.  Each splitter contains a 

bulk reacting porous material that is separated from the airway by a perforated sheet.  A different 

porous material is assumed to be present in each splitter, although the material is assumed to be 

both homogeneous and isotropic.  Furthermore, a different perforate sheet may be present on 

either side of a splitter, provided that the properties of the perforate remain uniform over 

Lx ≤≤0 , and Hz ≤≤0 .  The duct walls (at  ,0=y and  ,by = over ;0 Hz ≤≤  and 0=z , and 

Hz = , over by ≤≤0 ) are assumed to be rigid and impervious to sound propagation for 

Lx ≤≤0 .  A total of s splitters are depicted in Fig. 1: each splitter has a width d  and is 

separated from the following splitter by an airway of width h .  It is convenient to combine each 

section of airway, and to denote region R2 as, 

 

 123212 ..... −− +++++= ss AAAAAR . (1) 

 

For each splitter, 

 

 ss BBBBBR +++++= −13213 ..... . (2) 

 

In addition, region Rc consists of the airway, region R2, added to the porous material, region R3.  

The acoustic wave equation for the inlet duct region R1, the outlet duct region R4, and the airway 

region R2, is given by 
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where 0c  is the isentropic speed of sound in air, qp′  is the acoustic pressure in region q (where 

4or  2, ,1=q ), and t is time.  For the porous material, the acoustic wave equation for any splitter 

k, is given by 
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where kc  is the speed of sound in the porous material.  The acoustic field in each region is 

expanded as an infinite sum over the duct eigenmodes, to give 
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Here, Aj, Bm, Cm, Dn, and Fj are modal amplitudes, mλ  is the wavenumber in region Rc, and jγ  is 

the wavenumber in the inlet/outlet section.  The quantities ),( zyjΦ and ),( zymΨ  are the 

transverse duct eigenfunctions in the inlet/outlet region and the silencer section respectively.  In 

addition, 1i −= , 00 ck ω= , and ω  is the radian frequency.  Note that cp′  encompasses regions 

R2 and R3, so that λ  is the (coupled) axial wavenumber for the silencer section. 
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B.  Finite element eigenvalue analysis 

A finite element eigenvalue analysis is carried out over the cross section of both the inlet/outlet 

ducts and the silencer section, although the analysis for an unlined rectangular duct is 

straightforward and so is not reported here.  For the silencer section (region Rc) the assumed 

form for cp′  [Eq. (6)] is substituted into Eq. (3), and this yields, for mode m and airway section r, 

 

 [ ] 0),(1),( 22

0

2 =−+∇ zykzy rryz ψλψ , (8) 

 

where ),( zyrψ  is the component of eigenfunction ),( zyΨ  that lies in region Ar (see Fig. 1).  

Here, yz∇  denotes a two-dimensional form of the Laplacian operator in the (y, z) plane.  For 

mode m, the wave equation in splitter k yields, 
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Here, ),( zykϕ  is the component of the eigenfunction ),( zyΨ  that lies in region Bk, and kΓ  is the 

(dimensionless) propagation constant of the porous material in splitter k.  The eigenfunction in 

each region may be approximated by a trial solution of the form 
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Here, ),( zyNrj  and ),( zyGkn  are the global trial (or shape) functions for the finite element mesh 

in airway r and splitter k, respectively; the number of nodes in airway r is nr, and in splitter k is 

nk.  It is convenient to express these nodal values in vector form, and to number the nodes as 

follows: for airway r, 
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and for splitter k, 

 

 [ ] 32

1

21 ),(),.....,,( ),,(),( kk

kn

k

k

knkkk

k

k
zyGzyGzyGzy ΨG=

















=

ϕ

ϕ

ϕ

ϕ . (13) 

 

The nodal values for each airway and splitter are combined to give, 
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The appropriate boundary conditions for regions R2 and R3 are zero normal acoustic particle 

velocity on the walls of the silencer, continuity of normal particle velocity over each perforate, 

and a pressure condition over each perforate.  Accordingly, zero normal particle velocity for 

airway r gives 
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For splitter k, 
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For the side walls, 
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Each splitter has a perforate located on both sides, except for those splitters located on the wall 

of the duct; thus for splitter k )1( sk ≤≤ , continuity of normal particle velocity over a perforate 

yields, 
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Similarly, the pressure condition over each perforate yields 
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Here, the (dimensionless) acoustic impedance of perforate e is denoted eζ , the mean fluid 

density in region R2 is 0ρ , and )(ωρk  is the equivalent complex density of the porous material in 

splitter k.  Equations (18)-(21) assume the thickness of the perforate is negligible.  Each perforate 

is numbered according to its location so that perforate 1 is located at 1y , and lies between splitter 
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B1 and airway A1; perforate 2 is located at 2y , and lies between splitter B2  and airway A1; 

perforate 3 is located at 3y , and lies between splitter B2  and airway A2; and so on.  Thus, the 

location of each perforate is given as 
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Here, kd  is the width of splitter k, and rh  is the width of airway r (see Fig. 1).  Note that each 

perforate has been numbered individually to allow a different sheet to be placed on either side of 

a splitter.  Furthermore, finite element discretisation requires the specification of two nodes at a 

given location on a perforate: one node which belongs only to the mesh in the airway, and one 

only to the mesh in the absorbent.  Here, a node at the perforate but lying in the airway is said to 

have location −y ; a node at the perforate but lying in the absorbent is said to have location +y . 

 

The boundary conditions specified in Eqs. (15)-(21) may be combined with Eqs. (8) and (9) to 

give a governing eigenequation for the silencer.  The details of the weak Galerkin finite element 

formulation for this type of problem have been reported elsewhere [5, 13], and so only the final 

eigenequation is presented here: 
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For the airway, 
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For the absorbent, 
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where, 
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where, 
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For each node in the finite element mesh that lies on a perforate but belongs to the airway,  
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Here, 
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Similarly, for each node in the finite element mesh that lies on a perforate but belongs to the 

absorbent, 
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Here it is assumed that identical elements are chosen on either side of the perforate.  The non 

zero elements of matrices [ ]−
2M  and [ ]+

3M  that appear in Eq. (25) are limited to those nodes lying 

on a perforate, although for convenience Eqs. (39), (40), (43), and (44) are written in general 

form.   

 

Finally, Eq. (24) may be re-written as 
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of nodes in the airway, N3 the number of nodes in the absorbent. 

 

C.  Numerical matching of sound fields 

On obtaining the eigenfunctions and wave numbers for regions R1, Rc and R4, the axial matching 

conditions are enforced over planes A and B using point collocation.  The appropriate matching 

conditions (at 0=x  and Lx = ) are continuity of acoustic pressure and normal particle velocity 

over the airway, and zero normal acoustic velocity over each splitter fairing.  The most 

convenient approach to enforcing these matching conditions, and the one adopted by Kirby and 

Lawrie [10], is to choose an identical transverse finite element mesh in regions R1, Rc and R4 and 

to match over every common node.  However, the addition of a perforate complicates matters, as 

additional nodes in the transverse finite element mesh are required at each perforate location in 

the silencer section.  For an automotive silencer, Kirby [13] addressed this problem by separately 
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matching pressure and velocity at a node in the airway region (location −y ) and normal particle 

velocity at a node in the absorbent region (location +y ).  For example, in Fig. 2(a) node b is said 

to have location −y  (position is exaggerated in the diagram, and for clarity only one dimension is 

shown), so that pressure and velocity conditions are enforced between nodes a and b.  For node c 

(location +y ), matching conditions appropriate to the absorbent region only are enforced – in this 

case zero normal particle velocity.  For the splitters in the current study, a further complication 

arises from the presence of the splitter fairings.  For example, in Fig. 2(b) the location of nodes a 

and j (again, exaggerated in the diagram) is no longer certain as they could assume either a −y  or 

a +y  location.  A solution is to choose the location of −y  for nodes a and j, and to apply 

matching conditions appropriate to the airway region between nodes a and b, and nodes j and l.  

Similarly, nodes c and k, in region Rc, are chosen to lie in a +y  location, and zero normal particle 

velocity is applied at the fairing in the absorbent region.  Thus, zero axial particle velocity is 

enforced over the fairing in region R1 by using nodes d, f and h in Fig. 2b.  In general terms, 

therefore, a reduction in the number of matching locations takes place in region R1, although this 

reduction serves to compensate exactly for the discrepancy between the number of nodes in 

region R1 (or R4) and region Rc.  Note, this will not reduce the accuracy of the method, when 

compared to the method of Kirby and Lawrie [10], since the mesh density in each region is not 

reduced: instead, nodes are added to account for the presence of a perforate. 

 

For the airway, continuity of pressure over plane A yields 
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where N1 is the number of nodes in region 1.  Here, the vector 2Ψ  holds those nodal values in 

the silencer section that lie in the airway (region R2), including nodes with location −y  [for 

example, nodes b and l in Fig. 2(b)].  Similarly, vector 2Φ  holds those nodal values [for 

eigenfunction ),( zyΦ ] in the inlet duct that lie on transverse locations identical to locations 

chosen for the nodes making up 2Ψ .  This assumes that each node lying adjacent to a perforate 

in the silencer section also lies in the airway [for example, nodes a and j in Fig. 2(b)].  Thus, 

vectors 2Φ  and 2Ψ  both have a length N2.  Continuity of axial velocity over plane A yields, 
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For plane B, continuity of pressure yields, 
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and continuity of axial particle velocity 
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For each splitter fairing, zero normal particle velocity over plane A yields, 
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and for plane B, 



 18 

 

 0ΨΨ =−∑∑
==

−
c

m

c

m

N

m

Lk

mmm

N

m

Lk

mmm eCeB
0

i

3

0

i

3
00 λλ λλ ,  on R3. (51) 

 

Here, region R3 encompasses all nodes that lie in the porous material, including nodes on a 

perforate with location +y , so that vector 3Ψ  has a length N3.  Finally, zero normal particle 

velocity over each splitter fairing is enforced for the inlet and outlet duct.  Matching takes place 

over those nodes lying adjacent to region R3, but does not include those nodes lying adjacent to a 

perforate.  For example, in Fig. 2(b), conditions are enforced over nodes h, f and d.  Thus, for 

plane A, 
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and, for plane B 
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Here, vector 3Φ  contains all nodes adjacent to region R3 except those lying on the perforate, so 

that vector 3Φ  has a length of pNN −3 , where pN  denotes the number of nodes positioned 

inside a splitter but adjacent to a perforate [nodes that have position +y , for example nodes c and 

k in Fig. 2(b)].  Equations (46)-(53) form a complete set of pNNN 2)(4 32 −+  equations (the 

collocation points) and )(2 1 cNN +  unknowns (the modal amplitudes), since pNNNN −+= 321 .  
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It is convenient to re-write Eqs. (46)-(53) and to introduce 
Lk

mm
meCC

λ0i~ −= , to yield the final set 

of matching conditions: 
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Equations (54)-(61) may be solved only after appropriate modal amplitudes jF , which describe 

the incident sound field, have been specified.  Source models are discussed in detail elsewhere 

(see for example, work by Kirby and Lawrie [10], Mechel [11], and Joseph et al [14]), although 

the most plausible representation of the noise emanating from a fan appears to be the assumption 

of equal modal energy density (EMED) for propagating modes.  Accordingly, the inlet modal 

amplitudes, assuming EMED, are given as [11] 
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where 0p  is a reference pressure chosen here, arbitrarily, to be equal to unity; IN  is the number 

of modes propagating in the inlet duct (for modes that are “cut-off”, 0=F ), and 
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Note that other source models, such as equal modal power, may readily be introduced here but 

are omitted in order to reduce the number of results presented later on.  A finite element 

eigenvalue solution for the inlet duct yields an unordered list of eigenvalues, which are sorted 

and numbered so that 0=m  has the largest real part, 1=m  the second largest real part, and so 

on.  Thus, Eq. (62) remains in general form, and the integral in Eq. (63) is computed 

numerically.  After determining appropriate values for jF , Eqs. (54)-(61) are solved 

simultaneously to find the ( )cNN +12  unknown modal amplitudes. 

 

A common method for representing silencer performance is the silencer transmission loss (TL), 

which is defined as the ratio of transmitted to incident sound powers (note that for experimental 

measurements undertaken according to ISO standards [15], the transmission loss of a silencer is 

equivalent to the insertion loss).  The inlet sound power is equal to unity, hence, in decibels  
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III.  RESULTS AND DISCUSSION 

 

The addition of higher-order incident modes aims to replicate the incident sound pressure field 

typically present in a real HVAC ducting system.  The measurement of silencer performance, 

when placed in situ, does, however, present many difficulties, not least in accurately measuring 

the sound pressure field emitted by a fan.  To overcome these difficulties, laboratory 

measurements for splitter silencers are normally performed using plane wave excitation.  For 

example, the measurements reported by Mechel [12] were performed according to standards (see 

also BS 7235 [15]) that stipulate an incident sound field with “dominating plane wave mode”.  

Accordingly, comparison between prediction and experiment is restricted here to transmission 

loss curves measured under plane wave excitation; the proposed model for multi-modal 

excitation is investigated theoretically and reported separately. 

 

The absorbent material in each splitter is assumed to be fibrous and bulk reacting.  Accordingly, 

the generalised results of Delany and Bazley [16], yield 

 

 ( )7.0595.0 098.01i189.0 −− ++= ξξΓ  (65) 

 

for the propagation constant, and 

 

 ( )[ ]754.0732.0

0 057.01i087.0)( −− ++−= ξξρωρ Γ  (66) 
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for the complex density.  Here, ξ  is a non-dimensional frequency parameter given by 

σρξ f0= , where f is frequency and σ  is the flow resistivity of the porous material.  The 

formulae of Delany and Bazley are known to be invalid at low frequencies, and so the semi-

empirical correction formulae of Kirby and Cummings [17] (see also Ref. [13]) are adopted here 

to alleviate this inconsistency.  Note that this method replicates, as far as possible, Delany and 

Bazley’s regression formulas over the frequency range for which their data is known to be valid; 

outside of this frequency range, plausible limiting values are substituted.  The theoretical 

analysis presented here is, however, sufficiently general so that alternative models for the porous 

material may be substituted (see, for example, alternative models suggested by Wilson [18] and 

Allard and Champoux [19]).  The impedance of the perforate is given as [13], 

 

 ( )[ ] Ω−−′= 1)(i425.0 00 ρωρζζ pdk , (59) 

 

where 

 

 [ ] [ ]
ppp dtdkckdt +++=′ 25.0i81 000νζ . (60) 

 

Here, t is the thickness of the perforate, pd  is the hole diameter, Ω  is the perforate area porosity, 

and ν  is the kinematic viscosity of air. 

 

A.  Plane wave excitation 

The experimental data reported by Mechel [12] are used here in order to compare prediction with 

experiment.  The assumption of plane wave excitation greatly simplifies the analysis since 

silencer symmetry may be utilised in order to reduce the problem from three to two dimensions 

(x, y plane).  Accordingly, the silencers tested by Mechel [12] may be simplified and a duct lined 
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on opposite walls analysed.  Mechel examined five different silencer configurations, for which 

each splitter contained an end fairing, although no perforate was present.  Only three of the five 

silencer configurations reported by Mechel are studied here, as this is deemed sufficient to 

evaluate the current analysis.  The dimensions of each silencer, after accounting for lines of 

symmetry, are listed in Table I.  A comparison between the measurements of Mechel [12] and 

predictions for silencer A is shown in Fig. 3.  Predictions are shown with and without splitter 

fairings (see Ref. [10] for an equivalent model that omits splitter fairings) and for a high 

perforate porosity ( 95.0=Ω ) so that any effects of the perforate in the current analysis are 

negligible.  Agreement between prediction and experiment in Fig. 3 is good, although in the 

medium frequency range some discrepancies are evident.  Agreement is similar to that reported 

by Mechel [12], who assumes a locally reacting liner, although for the medium frequency range 

the current method tends to over predict transmission loss, whereas Mechel under predicts 

transmission loss.  The good agreement between the two methods at low and high frequencies 

suggests that, at these frequency extremes, performance depends strongly on the silencer 

geometry.  Moreover, the effect of adding splitter fairings is clearly evident, although only 

within the medium frequency range, which further supports this observation.  The peak in 

transmission loss seen for silencer A (and also for silencers B and C to follow) is caused by the 

cut-on of the (0, 2) mode in regions R1 and R4.  Such a peak in transmission loss is observed only 

in studies of finite length HVAC silencers (that include the inlet/outlet ductwork) and may be 

seen also in the predictions of Mechel [12]. 

 

The material in silencer B has a higher flow resistivity than that in silencer A, and also a smaller 

cross-sectional area.  Figure 4 reveals a maximum discrepancy of about 4 dB between prediction 
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and experiment, although the current model again over predicts silencer performance in the 

medium frequency range.  Here, direct comparison between prediction and experiment is 

difficult as the experiment adopts a one third octave band analysis, whereas predictions are 

narrow band.  Hence, experimental measurements are unlikely to exhibit the marked peaks seen 

in predicted transmission loss.  Mechel [12] does, however, appear to obtain better agreement for 

this silencer at frequencies close to 1 kHz, although again the silencer transmission loss is under 

predicted. 

 

For silencers A and B, consistent differences between the current model and that of Mechel [12] 

exist:  the current model tends to over predict transmission loss, whereas Mechel tends to under 

predict transmission loss, especially in the medium frequency range.  This difference is not 

surprising given that Mechel suppresses sound propagation in the material itself.  However, 

neither method accurately reproduces experimental measurements over the whole frequency 

range, even though the current method properly represents the propagation of sound within the 

absorbing material.  The accuracy of predictions do, however, compare well with those reported 

for dissipative automotive exhaust silencers, especially if one takes into account the relative 

complexity of the current silencer.  It is possible that the differences observed between the 

current predictions and experimental measurements may partly be explained by inaccurate 

characterisation of the absorbing material: the bulk acoustic properties are based here on the 

Delany and Bazley coefficients [16] averaged over a number of fibrous materials, and these may 

not accurately represent the performance of an individual real material.  Note that the material 

data referred to by Mechel [12] was also obtained after averaging measurements over a number 

of fibrous materials and predictions are very similar to those found when using Delany and 
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Bazley’s coefficients.  Furthermore, discrepancies at medium and high frequencies may by 

caused by neglecting the effects of structural flanking transmission, which may appear in the 

form of noise bypassing the silencer and travelling along the duct walls or, alternatively, 

breaking out of the test duct and breaking back in downstream of the silencer. 

 

Silencer C has a more extreme geometry as the airway takes up only 20% of the overall cross-

sectional area.  Comparison between prediction and experiment in Fig. 5 shows discrepancies 

that are far more pronounced than for silencers A and B, especially above 1 kHz.  Mechel [12] 

observed similar discrepancies, and both methods significantly over predict silencer performance 

at higher frequencies.  Mechel proposed that assuming a locally reacting material caused these 

discrepancies.  The current analysis addresses this issue by treating the material as bulk reacting, 

although it is evident in Fig. 5 that agreement with measured data has not significantly been 

improved.  Thus, at higher frequencies the model used for the porous material cannot explain 

discrepancies; instead, it is highly likely that these differences are caused by structural flanking 

transmission.  Cummings and Astley [20] investigated this effect for lined ducts and showed that 

flanking transmission places limits on silencer performance.  They note also, “If the silencer 

presents a large attenuation (at a particular frequency) to the internal sound field, especially by 

virtue of its length, there is a possibility that flanking paths may exist, resulting in loss of 

acoustic performance”.  Furthermore, Brandstätt et al. [9] examine silencers similar to those 

studied here, and use experimental techniques that are likely to be similar to those used by 

Mechel [12] (given the commonality in institutions between the lead authors).  Brandstätt et al. 

acknowledge that flanking transmission may limit the attenuation values measured for their 

silencers, although they postulate that this effect is limited only to the medium frequency range 
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(around 1 kHz).  Brandstätt et al. further suggest that discrepancies between prediction and 

experiment at higher frequencies are caused by “reflection at the splitter, but also…higher-order 

modes in the air passage which are well attenuated”.  However, current results – that include all 

relevant duct modes - do not support the latter of these observations, as predictions lie above 

measured transmission loss values at higher frequencies.  Instead, current results support the 

observations of Cummings and Astley [20] since a loss of silencer performance is observed at 

regions of high attenuation and this includes in the higher frequency range.  Accordingly, the 

omission of structural flanking transmission limits the applicability of the current approach, at 

least for silencers that present a large attenuation at a particular frequency. 

 

 

B.  Multi-mode excitation 

In HVAC ducts a multi-mode incident sound field, driven by the fan, is likely to be present 

above the cut-on frequency of the first higher order duct mode.  It is normal to assume that these 

higher order modes share a common property, for example, equal modal energy density (EMED) 

[11, 14].  Modelling a multi-mode incident sound field does, however, require a fully three-

dimensional approach, as lines of symmetry no longer exist [11].  Accordingly, a two-

dimensional eigenvalue analysis (y, z plane) is necessary and this incurs a significant increase in 

computational expenditure when compared to the one-dimensional eigenvalue (y plane) approach 

suitable for plane wave excitation. 

 

The effect of an EMED incident sound field on the acoustic performance of silencer C is shown 

in Fig. 5 (assuming a representative duct height of 0.4 m, as Mechel [12] did not publish values 
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of H for his test silencers).  For this silencer, transmission loss predictions are generally lower 

than for plane wave excitation.  This behaviour is likely to be caused by higher order modes 

propagating at angles that bypass the splitter fairings.  This effect depends on silencer geometry 

and frequency, as well as the choice of absorbing material, although it is possible, under some 

circumstances, for the splitter fairings to preferentially reflect higher order modes. 

 

The multi-mode predictions for silencer C were generated using a transverse mesh refined 

according to excitation frequency.  As frequency increases it’s normal to increase the number of 

degrees of freedom in the finite element mesh: as a general guideline, between 7 and 10 finite 

element nodes should be adopted per wavelength [21].  Thus, for HVAC silencers a very large 

number of degrees of freedom are often necessary, even for relatively small silencers.  For 

example, at 2 kHz, values of 5331 =N  and 585=cN , were found to be necessary for silencer C; 

at 4 kHz double this number are required.  It is clear that matrix dimensions can quickly become 

very large for multi-mode excitation, and transmission loss predictions for silencer C stop at 4 

kHz in Fig. 5 because of computational limitations.  Furthermore, at higher frequencies the 

number of propagating incident modes becomes very large: at 4 kHz, 96 modes are found to 

propagate.  Many of these incident modes have very similar wavenumbers and numerical 

problems arise if these modes are not accurately computed.  In a real HVAC duct it is, however, 

unlikely that this number of incident modes will propagate at higher frequencies, and the 

usefulness of adopting EMED is probably limited at higher frequencies. 

 

The computational expenditure associated with modelling three-dimensional sound propagation 

encourages an investigation into the feasibility of approximating silencer performance using a 
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two-dimensional approach.  In Fig. 6 comparison between predictions generated with and 

without the assumption of cross-sectional symmetry are shown for a splitter silencer (silencer D, 

see Table I) that represents silencers typically found in HVAC systems.  Silencer D contains both 

a perforate and splitter fairings: for the perforate, mm 1=t , mm 5.3=pd , and 3.0=Ω .  

Transmission loss predictions shown in Fig. 6 were generated using a two-dimensional 

representation of the splitter (x, y axis), for by ≤≤0 , and 20 by ≤≤ , and these are compared 

against a three-dimensional solution.  Silencer D is larger than silencer C and computational 

resources restrict predictions for the three-dimensional approach to a maximum frequency of 2 

kHz (where, 6331 =N  and 765=cN ).  A comparison between two- and three-dimensional 

predictions shows reasonably good agreement and generally the predictions are within 10 dB of 

one another.  It is evident that the two-dimensional model, encompassing by ≤≤0 , produces 

better agreement with three-dimensional predictions, when compared to the model encompassing 

20 by ≤≤ ; this is to be expected, as a greater number of incident modes are included in the 

former model.  Although the level of agreement between two- and three-dimensional 

formulations will depend on the particular silencer chosen, after analysing a number of different 

splitter silencers (not shown here) the predictions shown in Fig. 6 appear to be representative of 

the general level of agreement to be expected.  Therefore, it appears sensible, at least in the 

preliminary stages of an iterative design procedure, to adopt a two-dimensional model for a 

splitter silencer, even if the silencer is excited by higher order modes.  Accordingly, all further 

results presented here were obtained using a two-dimensional representation (x, y plane) of the 

splitter silencer. 
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It is interesting to examine the effect of splitter fairings on the sound pressure distribution in the 

duct.  For silencer D, the relative sound pressure level at a frequency of 1.5 kHz, calculated using 

a two dimensional ( 20 by ≤≤ ) representation, is shown with splitter fairings in Fig. 7, and 

without fairings in Fig. 8.  The influence of the fairings on sound pressure distribution is most 

obvious in the inlet duct, especially close to the inlet plane of the silencer.  It is interesting also to 

note that the sound pressure fields, downstream of the silencer, are similar to one another in Figs. 

7 and 8, especially well away from the silencer outlet plane.  Moreover, the complex nature of 

this sound pressure field demonstrates the difficulty in measuring accurately silencer 

performance when higher order modes propagate downstream of the silencer. 

 

The influence of perforate porosity on silencer transmission loss is shown, for silencer D, in Fig. 

9.  Here, the same perforate porosity is used for each baffle and it’s evident that, as the perforate 

area porosity is reduced, the transmission loss increases slightly at low frequencies but reduces 

significantly at higher frequencies.  This behaviour is similar to that found by other authors [1, 

13] and indicates that, at least for larger HVAC silencers, it is preferable to use perforates with a 

high percentage open area.  The model developed in Sec. II also allows for a different perforate 

porosity to be used for each splitter.  By altering perforate porosity it is possible to manipulate 

the transmission loss curves shown in Fig. 9, although after conducting a number of numerical 

tests an improvement in transmission loss, over and above that found for a nominal limiting 

value of 4.0=Ω , was not forthcoming.  Similarly, it is straightforward to alter the material 

properties for each splitter section, however after a number of parametric studies only relatively 

minor modifications in silencer performance were observed – predominantly in the medium 

frequency range.  Moreover, such modifications in performance depend heavily on the silencer 
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geometry chosen, which prevents the formulation of general guidelines regarding the optimum 

choice of material properties in splitters. 

 

Transmission loss predictions obtained in the absence of splitter fairings and a perforate [see 

Kirby and Lawrie [10]) are also shown in Fig. 9.  It is clear that splitter fairings have a 

significant effect on silencer performance and, for the silencers studied here, the effect of splitter 

fairings is more noticeable when higher order modes are present in the inlet duct. 

 

 

 

IV.  CONCLUSIONS 

 

A two-dimensional analysis for a splitter silencer provides reasonable agreement with results 

obtained using a three-dimensional model.  The largest discrepancy between the two methods is 

in the medium frequency range.  The computational savings found when using the two-

dimensional model are significant and it appears preferable to adopt a two-dimensional model, at 

least for a preliminary iterative design procedure. 

 

Results indicate that, for splitter silencers, it is preferable to adopt as high a perforate porosity as 

possible and that no significant improvement in performance can be obtained by varying the 

porosity for different baffles.  General guidelines do not, however, readily present themselves 

when it comes to the choice of absorbing material for each splitter.  Moreover, at low and high 
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frequencies silencer performance largely depends on silencer geometry rather than the type of 

material chosen. 

 

Splitter fairings significantly affect HVAC silencer performance.  This effect is most noticeable 

in the medium frequency range, and when the silencer is excited by higher order modes.  Thus, 

laboratory measurements, or theoretical predictions, based on a predominantly plane wave sound 

source are unlikely to represent accurately the performance of a silencer in a real ducting system.  

Moreover, structural flanking effects may also limit both the accuracy of the current modelling 

approach, and also the applicability to real systems of silencer measurements taken under 

laboratory conditions (in which structural flanking has been suppressed). 
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Table I. 

Data for silencers. 

Silencer 
d1 

(m) 

h1 

(m) 

d2 

(m) 

h2 

(m) 

d3 

(m) 

L  

(m) 

H 

(m) 

σ 

(Pa s /m
2
) 

A 0.18 0.24 0.18 - - 1.5 - 11000 

B 0.1 0.2 0.1 - - 0.5 - 12500 

C 0.1 0.05 0.1 - - 0.5 - 12500 

D 0.1 0.1 0.2 0.1 0.1 0.9 0.9 8000 
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Fig. 1.  (a)  Plan view of silencer geometry (a splitter consists of a section of porous material that 

is bounded at either end by a metallic fairing, and separated from the airway by a perforated 

sheet).  (b)  Geometry of silencer cross-section. 
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Fig. 2.  (a)  Example of nodal locations near a perforate for an automotive silencer [13].  (b)  

Example of nodal locations for a single splitter. 
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Fig. 3.  Transmission loss for silencer A:  ●, experiment [12]; , prediction with fairings 

( 43 ,411 == cNN );      , prediction without fairings ( 411 == cNN ). 
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Fig. 4.  Transmission loss for silencer B:  ●, experiment [12]; , prediction with fairings 

( 35 ,331 == cNN );      , prediction without fairings ( 331 == cNN ). 
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Fig. 5.  Transmission loss for silencer C:  ●, experiment [12]; , prediction with fairings 

( 23 ,211 == cNN );      , prediction without fairings ( 211 == cNN );   -    -   , three 

dimensional model, EMED excitation, prediction with fairings ( 585 ,5331 == cNN ). 
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Fig. 6.  Transmission loss predictions for silencer D with EMED excitation: , three-

dimensional model;      , two-dimensional model for by ≤≤0  ( 29 ,251 == cNN );   -  

  -   , two-dimensional model for 20 by ≤≤  ( 15 ,131 == cNN ). 
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Fig. 7.  Sound pressure distribution at 1500 Hz for silencer D with splitter fairings, 20 by ≤≤ . 
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Fig. 8.  Sound pressure distribution at 1500 Hz for silencer D without splitter fairings, 

20 by ≤≤ . 
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Fig. 9.  Transmission loss predictions for silencer D with EMED excitation ( 29 ,251 == cNN ): 

, 4.0=Ω  with splitter fairing;      , 3.0=Ω  with splitter fairing;   -    -   , 

1.0=Ω  with splitter fairing; ××, without perforate and fairing. 


