58 research outputs found

    Quantitative Description of Strong-Coupling of Quantum Dots in Microcavities

    Full text link
    We have recently developed a self-consistent theory of Strong-Coupling in the presence of an incoherent pumping [arXiv:0807.3194] and shown how it could reproduce quantitatively the experimental data [PRL 101, 083601 (2008)]. Here, we summarize our main results, provide the detailed analysis of the fitting of the experiment and discuss how the field should now evolve beyond merely qualitative expectations, that could well be erroneous even when they seem to be firmly established.Comment: Submitted to the AIP Conference Proceedings Series for the ICPS 2008 (Rio de Janeiro). 2 pages, reduced-quality figur

    Electrostatic control of quantum dot entanglement induced by coupling to external reservoirs

    Full text link
    We propose a quantum transport experiment to prepare and measure charge-entanglement between two electrostatically defined quantum dots. Coherent population trapping, as realized in cavity quantum electrodynamics, can be carried out by using a third quantum dot to play the role of the optical cavity. In our proposal, a pumping which is quantum mechanically indistinguishable for the quantum dots drives the system into a state with a high degree of entanglement. The whole effect can be switched on and off by means of a gate potential allowing both state preparation and entanglement detection by simply measuring the total current.Comment: 5 pages, 4 figures, Latex2e with EPL macros, to appear in Europhysics Letter

    Optimization of photon correlations by frequency filtering

    Full text link
    Photon correlations are a cornerstone of Quantum Optics. Recent works [NJP 15 025019, 033036 (2013), PRA 90 052111 (2014)] have shown that by keeping track of the frequency of the photons, rich landscapes of correlations are revealed. Stronger correlations are usually found where the system emission is weak. Here, we characterize both the strength and signal of such correlations, through the introduction of the 'frequency resolved Mandel parameter'. We study a plethora of nonlinear quantum systems, showing how one can substantially optimize correlations by combining parameters such as pumping, filtering windows and time delay.Comment: Small updates to take into account the recent experimental observation of the physics here analyze

    Incoherent Mollow triplet

    Full text link
    A counterpart of the Mollow triplet (luminescence lineshape of a two-level system under coherent excitation) is obtained for the case of incoherent excitation in a cavity. Its analytical expression, in excellent agreement with numerical results, pinpoints analogies and differences between the conventional resonance fluorescence spectrum and its cavity QED analogue under incoherent excitation.Comment: 4 pages, 3 figure

    Two-photon spectra of quantum emitters

    Get PDF
    We apply our recently developed theory of frequency-filtered and time-resolved N-photon correlations to study the two-photon spectra of a variety of systems of increasing complexity: single mode emitters with two limiting statistics (one harmonic oscillator or a two-level system) and the various combinations that arise from their coupling. We consider both the linear and nonlinear regimes under incoherent excitation. We find that even the simplest systems display a rich dynamics of emission, not accessible by simple single photon spectroscopy. In the strong coupling regime, novel two-photon emission processes involving virtual states are revealed. Furthermore, two general results are unraveled by two-photon correlations with narrow linewidth detectors: i) filtering induced bunching and ii) breakdown of the semi-classical theory. We show how to overcome this shortcoming in a fully-quantized picture.Comment: 27 pages, 8 figure
    corecore