32,982 research outputs found

    Model of the polarized foreground diffuse Galactic emissions from 33 to 353 GHz

    Full text link
    We present 3D models of the Galactic magnetic field including regular and turbulent components, and of the distribution of matter in the Galaxy including relativistic electrons and dust grains. By integrating along the line of sight, we construct maps of the polarized Galactic synchrotron and thermal dust emissions for each of these models. We perform a likelihood analysis to compare the maps of the Ka, Q, V and W bands of the Wilkinson Microwave Anisotropy Probe (Wmap) and the 353 GHz Archeops data to the models obtained by varying the pitch angle of the regular magnetic field, the relative amplitude of the turbulent magnetic field and the extrapolation spectral indices of the synchrotron and thermal dust emissions. The best-fit parameters obtained for the different frequency bands are very similar and globally the data seem to favor a negligible isotropic turbulent magnetic field component at large angular scales (an anisotropic line-of-sight ordered component can not be studied using these data). From this study, we conclude that we are able to propose a consistent model of the polarized diffuse Galac- tic synchrotron and thermal dust emissions in the frequency range from 33 to 353 GHz, where most of the CMB studies are performed and where we expect a mixture of these two main foreground emissions. This model can be very helpful to estimate the contamination by foregrounds of the polarized CMB anisotropies, for experiments like the Planck satellite.Comment: 22 pages, 4 figure

    Mechanisms for photon sorting based on slit-groove arrays

    Get PDF
    Mechanisms for one-dimensional photon sorting are theoretically studied in the framework of a couple mode method. The considered system is a nanopatterned structure composed of two different pixels drilled on the surface of a thin gold layer. Each pixel consists of a slit-groove array designed to squeeze a large fraction of the incident light into the central slit. The Double-Pixel is optimized to resolve two different frequencies in the near infrared. This system shows a high transmission efficiency and a small crosstalk. Its response is found to strongly depend on the effective area shared by overlapping pixels. Three different regimes for the process of photon sorting are identified and the main physical trends underneath in such regimes are unveiled. Optimal efficiencies for the photon sorting are obtained for a moderate number of grooves that overlap with grooves of the neighbor pixel. Results could be applied to optical and infrared detectors.Comment: 12 pages, 4 figure
    corecore