84 research outputs found
Nanoscale Smoothing and the Analysis of Interfacial Charge and Dipolar Densities
The interface properties of interest in multilayers include interfacial
charge densities, dipole densities, band offsets, and screening-lengths, among
others. Most such properties are inaccesible to direct measurements, but are
key to understanding the physics of the multilayers. They are contained within
first-principles electronic structure computations but are buried within the
vast amount of quantitative information those computations generate. Thus far,
they have been extracted from the numerical data by heuristic nanosmoothing
procedures which do not necessarily provide results independent of the
smoothing process. In the present paper we develop the theory of nanosmoothing,
establishing procedures for both unpolarized and polarized systems which yield
interfacial charge and dipole densities and band offsets invariant to the
details of the smoothing procedures when the criteria we have established are
met. We show also that dipolar charge densities, i. e. the densities of charge
transferred across the interface, and screening lengths are not invariant. We
illustrate our procedure with a toy model in which real, transversely averaged
charge densities are replaced by sums of Gaussians.Comment: 30 pages, 15 figures, 4 table
Phonons in random alloys: the itinerant coherent-potential approximation
We present the itinerant coherent-potential approximation(ICPA), an analytic,
translationally invariant and tractable form of augmented-space-based,
multiple-scattering theory in a single-site approximation for harmonic phonons
in realistic random binary alloys with mass and force-constant disorder.
We provide expressions for quantities needed for comparison with experimental
structure factors such as partial and average spectral functions and derive the
sum rules associated with them. Numerical results are presented for Ni_{55}
Pd_{45} and Ni_{50} Pt_{50} alloys which serve as test cases, the former for
weak force-constant disorder and the latter for strong. We present results on
dispersion curves and disorder-induced widths. Direct comparisons with the
single-site coherent potential approximation(CPA) and experiment are made which
provide insight into the physics of force-constant changes in random alloys.
The CPA accounts well for the weak force-constant disorder case but fails for
strong force-constant disorder where the ICPA succeeds.Comment: 19 pages, 12 eps figures, uses RevTex
Beitrag zum Problem der heterosynaptischen Facilitation in Aplysia californica
1. Heterosynaptic facilitation (H.S.F.) of single neurons in the central nervous system of Aplysia can be repeated virtually indefinitely, provided sufficient time is allowed for recovery between the trials.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47439/1/424_2004_Article_BF00362956.pd
A simplified microwave-based motion detector for home cage activity monitoring in mice
Background: Locomotor activity of rodents is an important readout to assess well-being and physical health, and is pivotal for behavioral phenotyping. Measuring homecage-activity with standard and cost-effective optical methods in mice has become difficult, as modern housing conditions (e.g. individually ventilated cages, cage enrichment) do not allow constant, unobstructed, visual access. Resolving this issue either makes greater investments necessary, especially if several experiments will be run in parallel, or is at the animals' expense. The purpose of this study is to provide an easy, yet satisfying solution for the behavioral biologist at novice makers level. Results: We show the design, construction and validation of a simplified, low-cost, radar-based motion detector for home cage activity monitoring in mice. In addition we demonstrate that mice which have been selectively bred for low levels of anxiety-related behavior (LAB) have deficits in circadian photoentrainment compared to CD1 control animals. Conclusion: In this study we have demonstrated that our proposed low-cost microwave-based motion detector is well-suited for the study of circadian rhythms in mice
- âŠ