409 research outputs found

    Dynamical DNA accessibility induced by chromatin remodeling and protein binding

    Get PDF
    International audienceChromatin remodeling factors are enzymes being able to alter locally chromatin structure at the nucleosomal level and they actively participate in the regulation of gene expression. Using simple rules for individual nucleosome motion induced by a remodeling factor, we designed simulations of the remodeling of oligomeric chromatin, in order to address quantitatively collective effects in DNA accessibility upon nucleosome mobilization. Our results suggest that accessibility profiles are inhomogeneous thanks to borders effects like protein binding. Remarkably, we show that the accessibility lifetime of DNA sequence is roughly doubled in the vicinity of borders as compared to its value in bulk regions far from the borders. These results are quantitatively interpreted as resulting from the confined diffusion of a large nucleosome depleted region

    The effect of the perturber population on subhalo measurements in strong gravitational lenses

    Get PDF
    Analyses of extended arcs in strong gravitational lensing images to date have constrained the properties of dark matter by measuring the parameters of one or two individual subhaloes. However, since such analyses are reliant on likelihood-based methods like Markov-chain Monte Carlo or nested sampling, they require various compromises to the realism of lensing models for the sake of computational tractability, such as ignoring the numerous other subhaloes and line-of-sight haloes in the system, assuming a particular form for the source model and requiring the noise to have a known likelihood function. Here, we show that a simulation-based inference method called truncated marginal neural ratio estimation (TMNRE) makes it possible to relax these requirements by training neural networks to directly compute marginal posteriors for subhalo parameters from lensing images. By performing a set of inference tasks on mock data, we verify the accuracy of TMNRE and show it can compute posteriors for subhalo parameters marginalized over populations of hundreds of substructures, as well as lens and source uncertainties. We also find that the multilayer perceptron (MLP) mixer network works far better for such tasks than the convolutional architectures explored in other lensing analyses. Furthermore, we show that since TMNRE learns a posterior function it enables direct statistical checks that would be extremely expensive with likelihood-based methods. Our results show that TMNRE is well-suited for analysing complex lensing data, and that the full subhalo and line-of-sight halo population must be included when measuring the properties of individual dark matter substructures with this technique

    Using open source middleware for securing E-Gov applications

    Get PDF
    Nowadays, a global information infrastructure connects remote parties through the use of large scale networks, and many companies focus on developing e-services based on remote resources and on interaction between remote parties. In such a context, e-Government (e-Gov) systems became of paramount importance for the Public Administration, and many ongoing development projects are targeted on their implementation and release. For open source software to play an important role in this scenario, two main technological requirements must be fulfilled: (i) the identification and optimization of de facto standards for building e-Gov open source software components and (ii) a standard integration strategy of these components into an open source middleware layer, capable of conveying a completely open-source e-Gov solution. In this paper, we argue that e-Gov systems should be constructed on a open source middleware layer, providing full public responsibility in its development

    Colloquium: Mechanical formalisms for tissue dynamics

    Full text link
    The understanding of morphogenesis in living organisms has been renewed by tremendous progressin experimental techniques that provide access to cell-scale, quantitative information both on theshapes of cells within tissues and on the genes being expressed. This information suggests that ourunderstanding of the respective contributions of gene expression and mechanics, and of their crucialentanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assistthe design and interpretation of experiments, point out the main ingredients and assumptions, andultimately lead to predictions. The newly accessible local information thus calls for a reflectionon how to select suitable classes of mechanical models. We review both mechanical ingredientssuggested by the current knowledge of tissue behaviour, and modelling methods that can helpgenerate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and tissue scale ("inter-cell") contributions. We recall the mathematical framework developpedfor continuum materials and explain how to transform a constitutive equation into a set of partialdifferential equations amenable to numerical resolution. We show that when plastic behaviour isrelevant, the dissipation function formalism appears appropriate to generate constitutive equations;its variational nature facilitates numerical implementation, and we discuss adaptations needed in thecase of large deformations. The present article gathers theoretical methods that can readily enhancethe significance of the data to be extracted from recent or future high throughput biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few corrections to the published version, all in Appendix D.2 devoted to large deformation

    The impact of Stieltjes' work on continued fractions and orthogonal polynomials

    Full text link
    Stieltjes' work on continued fractions and the orthogonal polynomials related to continued fraction expansions is summarized and an attempt is made to describe the influence of Stieltjes' ideas and work in research done after his death, with an emphasis on the theory of orthogonal polynomials

    Spanning forests and the q-state Potts model in the limit q \to 0

    Get PDF
    We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially, this limit gives rise to the generating polynomial of spanning forests; physically, it provides information about the Potts-model phase diagram in the neighborhood of (q,v) = (0,0). We have studied this model on the square and triangular lattices, using a transfer-matrix approach at both real and complex values of w. For both lattices, we have computed the symbolic transfer matrices for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves of partition-function zeros in the complex w-plane. For real w, we find two distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp. w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w > w_0 we find a non-critical disordered phase, while for w < w_0 our results are compatible with a massless Berker-Kadanoff phase with conformal charge c = -2 and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w = w_0 we find a "first-order critical point": the first derivative of the free energy is discontinuous at w_0, while the correlation length diverges as w \downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0 seems to be the same for both lattices and it differs from that of the Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1, the leading thermal scaling dimension is x_{T,1} = 0, and the critical exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65 Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and forests_tri_2-9P.m. Final journal versio

    The repulsive lattice gas, the independent-set polynomial, and the Lov\'asz local lemma

    Full text link
    We elucidate the close connection between the repulsive lattice gas in equilibrium statistical mechanics and the Lovasz local lemma in probabilistic combinatorics. We show that the conclusion of the Lovasz local lemma holds for dependency graph G and probabilities {p_x} if and only if the independent-set polynomial for G is nonvanishing in the polydisc of radii {p_x}. Furthermore, we show that the usual proof of the Lovasz local lemma -- which provides a sufficient condition for this to occur -- corresponds to a simple inductive argument for the nonvanishing of the independent-set polynomial in a polydisc, which was discovered implicitly by Shearer and explicitly by Dobrushin. We also present some refinements and extensions of both arguments, including a generalization of the Lovasz local lemma that allows for "soft" dependencies. In addition, we prove some general properties of the partition function of a repulsive lattice gas, most of which are consequences of the alternating-sign property for the Mayer coefficients. We conclude with a brief discussion of the repulsive lattice gas on countably infinite graphs.Comment: LaTex2e, 97 pages. Version 2 makes slight changes to improve clarity. To be published in J. Stat. Phy
    corecore