155 research outputs found

    Boron Fertilization of Corn in Kentucky

    Get PDF
    The need for use of boron (B) for alfalfa production has been recognized for many years in Kentucky and is presently recommended for general use as an annual topdressing on alfalfa fields. Use of B is also recommended in Kentucky for red clover fields which are to be harvested for seed. In recent years, there has been interest in use of fertilizer B for good corn production in Kentucky. Plant available B is greatly affected by soil pH and decreases with increasing soil pH. Because of this, some states recommend use of B on corn grown on soils with a pH of 6.1 or higher. Also, some commercial soil testing laboratories serving Kentucky routinely test for B, and often recommend its use for corn. This has resulted in many corn growers in Kentucky asking if they need to use B on corn

    Spin-gap opening accompanied by a strong magnetoelastic response in the S=1 magnetic dimer system Ba3BiRu2O9

    Full text link
    Neutron diffraction, magnetization, resistivity, and heat capacity measurements on the 6H-perovskite Ba3BiRu2O9 reveal simultaneous magnetic and structural dimerization driven by strong magnetoelastic coupling. An isostructural but strongly displacive first-order transition on cooling through T*=176 K is associated with a change in the nature of direct Ru-Ru bonds within Ru2O9 face-sharing octahedra. Above T*, Ba3BiRu2O9 is an S=1 magnetic dimer system with intradimer exchange interactions J0/kB=320 K and interdimer exchange interactions J'/kB=-160 K. Below T*, a spin-gapped state emerges with \Delta\approx220 K. Ab initio calculations confirm antiferromagnetic exchange within dimers, but the transition is not accompanied by long range-magnetic order.Comment: 5 pages, 5 figures, accepted by Physical Review

    Approaching the knee -- balloon-borne observations of cosmic ray composition

    Full text link
    Below the knee in the cosmic ray spectrum, balloon and spacecraft experiments offer the capability of direct composition and energy measurements on the primary particles. A major difficulty is obtaining enough exposure to extend the range of direct measurements sufficiently high in energy to permit overlap with ground-based observations. Presently, balloon and space measurements extend only up to ~100 TeV, well below the range of ground-based experiments. The prospect of Ultra-Long Duration Balloon missions offers the promise of multiple long flights that can build up exposure. The status of balloon measurements to measure the high energy proton and nuclear composition and spectrum is reviewed, and the statistical considerations involved in searching for a steepening in the spectrum are discussed. Given the very steeply falling spectrum, it appears unlikely that balloon experiments will be able to extend the range of direct measurements beyond 1000 TeV any time in the near future. Especially given the recent suggestions from KASCADE that the proton spectrum steepens only at 4000-5000 TeV, the chance of detecting the knee with direct measurements of protons to iron on balloons is not likely to occur without significant increases in the payload and flight duration capabilities of high altitude balloons.Comment: 10 pages, to be published, J. Phys. Conf. Ser. (Proc. Workshop on Physics at the End of the Galactic Cosmic Ray Spectrum, Aspen, April 2005

    Isospin Physics in Heavy-Ion Collisions at Intermediate Energies

    Get PDF
    In nuclear collisions induced by stable or radioactive neutron-rich nuclei a transient state of nuclear matter with an appreciable isospin asymmetry as well as thermal and compressional excitation can be created. This offers the possibility to study the properties of nuclear matter in the region between symmetric nuclear matter and pure neutron matter. In this review, we discuss recent theoretical studies of the equation of state of isospin-asymmetric nuclear matter and its relations to the properties of neutron stars and radioactive nuclei. Chemical and mechanical instabilities as well as the liquid-gas phase transition in asymmetric nuclear matter are investigated. The in-medium nucleon-nucleon cross sections at different isospin states are reviewed as they affect significantly the dynamics of heavy ion collisions induced by radioactive beams. We then discuss an isospin-dependent transport model, which includes different mean-field potentials and cross sections for the proton and neutron, and its application to these reactions. Furthermore, we review the comparisons between theoretical predictions and available experimental data. In particular, we discuss the study of nuclear stopping in terms of isospin equilibration, the dependence of nuclear collective flow and balance energy on the isospin-dependent nuclear equation of state and cross sections, the isospin dependence of total nuclear reaction cross sections, and the role of isospin in preequilibrium nucleon emissions and subthreshold pion production.Comment: 101 pages with embedded epsf figures, review article for "International Journal of Modern Physics E: Nuclear Physics". Send request for a hard copy to 1/author

    Clutch friction measurement

    No full text

    FĂĽnfiiber-Drone: A Modular Open-Platform 18-grams Autonomous Nano-Drone

    No full text
    Miniaturizing an autonomous robot is a challenging task - not only the mechanical but also the electrical components have to operate within limited space, payload, and power. Furthermore, the algorithms for autonomous navigation, such as state-of-the-art (SoA) visual navigation deep neural networks (DNNs), are becoming increasingly complex, striving for more flexibility and agility. In this work, we present a sensor-rich, modular, nano-sized Unmanned Aerial Vehicle (UAV), almost as small as a five Swiss Franc coin - called FĂĽnfliber - with a total weight of 18g and 7.2cm in diameter. We conceived our UAV as an open-source hardware robotic platform, controlled by a parallel ultra-low power (PULP) system-on-chip (SoC) with a wide set of onboard sensors, including three cameras (i.e., infrared, optical flow, and standard QVGA), multiple Time-of-Flight (ToF) sensors, a barometer, and an inertial measurement unit. Our system runs the tasks necessary for a flight controller (sensor acquisition, state estimation, and low-level control), requiring only 10% of the computational resources available aboard, consuming only 9mW - 13x less than an equivalent Cortex M4-based system. Pushing our system at its limit, we can use the remaining onboard computational power for sophisticated autonomous navigation workloads, as we showcase with an SoA DNN running at up to 18Hz, with a total electronics' power consumption of 271mW

    Solution of Linear Gyroscopic Systems

    No full text
    • …
    corecore