26,930 research outputs found

    Evaluate ERTS Imagery for Mapping and Detection of Changes of Snowcover on Land and on Glaciers

    Get PDF
    ERTS-1 imagery for mapping and detecting changes in snow cover on land and glacier

    Signatures of dynamically polarized nuclear spins in all-electrical lateral spin transport devices

    Full text link
    The effect of nuclear spins in Fe/GaAs all-electrical spin-injection devices is investigated. At temperatures below 50 K, strong modifications of the non-local spin signal are found that are characteristic for hyperfine coupling between conduction electrons and dynamically polarized nuclear spins. The perpendicular component of the nuclear Overhauser field depolarizes electron spins near zero in-plane external magnetic field, and can suppress such dephasing when antialigned with the external field, leading to satellite peaks in a Hanle measurement. The features observed agree well with a Monte Carlo simulation of the spin diffusion equation including hyperfine interaction, and are used to study the nuclear spin dynamics and relate it to the spin polarization of injected electrons.Comment: 6 pages, 4 figure

    Graph algebras and orbit equivalence

    Full text link
    We introduce the notion of orbit equivalence of directed graphs, following Matsumoto's notion of continuous orbit equivalence for topological Markov shifts. We show that two graphs in which every cycle has an exit are orbit equivalent if and only if there is a diagonal-preserving isomorphism between their CC^*-algebras. We show that it is necessary to assume that every cycle has an exit for the forward implication, but that the reverse implication holds for arbitrary graphs. As part of our analysis of arbitrary graphs EE we construct a groupoid G(C(E),D(E))\mathcal{G}_{(C^*(E),\mathcal{D}(E))} from the graph algebra C(E)C^*(E) and its diagonal subalgebra D(E)\mathcal{D}(E) which generalises Renault's Weyl groupoid construction applied to (C(E),D(E))(C^*(E),\mathcal{D}(E)). We show that G(C(E),D(E))\mathcal{G}_{(C^*(E),\mathcal{D}(E))} recovers the graph groupoid GE\mathcal{G}_E without the assumption that every cycle in EE has an exit, which is required to apply Renault's results to (C(E),D(E))(C^*(E),\mathcal{D}(E)). We finish with applications of our results to out-splittings of graphs and to amplified graphs.Comment: 27 page

    Electric field gradients from first-principles and point-ion calculations

    Full text link
    Point-ion models have been extensively used to determine "hole numbers" at copper and oxygen sites in high-temperature superconducting cuprate compounds from measured nuclear quadrupole frequencies. The present study assesses the reliability of point-ion models to predict electric field gradients accurately and also the implicit assumption that the values can be calculated from the "holes" and not the total electronic structure. First-principles cluster calculations using basis sets centred on the nuclei have enabled the determination of the charge and spin density distribution in the CuO2-plane. The contributions to the electric field gradients and the magnetic hyperfine couplings are analysed in detail. In particular they are partitioned into regions in an attempt to find a correlation with the most commonly used point-ion model, the Sternheimer equation which depends on the two parameters R and gamma. Our most optimistic objective was to find expressions for these parameters, which would improve our understanding of them, but although estimates of the R parameter were encouraging the method used to obtain the gamma parameter indicate that the two parameters may not be independent. The problem seems to stem from the covalently bonded nature of the CuO2-planes in these structures which severely questions using the Sternheimer equation for such crystals, since its derivation is heavily reliant on the application of perturbation theory to predominantly ionic structures. Furthermore it is shown that the complementary contributions of electrons and holes in an isolated ion cannot be applied to estimates of electric field gradients at copper and oxygen nuclei in cuprates.Comment: 19 pages, 4 figure

    Constructing a Social Problem: The Press and the Environment

    Get PDF
    The U. S. daily press might seem to be in a strategic position to function as a claims-maker in the early construction of a social problem. But in the case of the manufacture of environmentalism as a social reality in the 1960\u27s and 70\u27s, the press was fairly slow to adopt a holistic environmental lexicon. Its reporting of environmental news even now only partially reflects concepts promoted by positive environmental claims-makers, such as planet-wide interdependence, and the threats to it by destructive technologies. The movement of environmental claims seems to have started with interest-group entrepreneurship using interpersonal communication and independent publication, gone on to attention in government, then finally--and incompletely--been put on the agenda of the daily press. Once on the press agenda, coverage of environmental issues may have improved. But there are some constraints, possibly inherent in the press as an institution, that limit its role in the incipient construction of some social problems

    Two-qubit Quantum Logic Gate in Molecular Magnets

    Full text link
    We proposed a scheme to realize a controlled-NOT quantum logic gate in a dimer of exchange coupled single-molecule magnets, [Mn4]2[\textrm{Mn}_4]_2. We chosen the ground state and the three low-lying excited states of a dimer in a finite longitudinal magnetic field as the quantum computing bases and introduced a pulsed transverse magnetic field with a special frequency. The pulsed transverse magnetic field induces the transitions between the quantum computing bases so as to realize a controlled-NOT quantum logic gate. The transition rates between the quantum computing bases and between the quantum computing bases and other excited states are evaluated and analyzed.Comment: 7 pages, 2 figure

    Dynamics of Quantum Dot Nuclear Spin Polarization Controlled by a Single Electron

    Full text link
    We present an experimental study of the dynamics underlying the buildup and decay of dynamical nuclear spin polarization in a single semiconductor quantum dot. Our experiment shows that the nuclei can be polarized on a time scale of a few milliseconds, while their decay dynamics depends drastically on external parameters. We show that a single electron can very efficiently depolarize the nuclear spins and discuss two processes that can cause this depolarization. Conversely, in the absence of a quantum dot electron, the lifetime of nuclear spin polarization is on the time scale of a second, most likely limited by the non-secular terms of the nuclear dipole-dipole interaction. We can further suppress this depolarization rate by 1-2 orders of magnitude by applying an external magnetic field exceeding 1 mT.Comment: 5 pages, 3 figure

    Analytical and experimental investigation of sidelobe suppression techniques for reflector type spacecraft antenna Final technical report

    Get PDF
    Near axis sidelobe suppression techniques for circularly polarized reflector type spacecraft antenna
    corecore