3,710 research outputs found
Decentralization and the Composition of Public Expenditures
DRMI Working Paper SeriesThe series is intended to convey the preliminary results of [DRMI] ongoing research. The research described in these papers is preliminary and has not completed the usual review process for Institute publications. We welcome feedback from readers and encourage you to convey your comments and criticisms directly to the authors
Physiological regulation of evaporative water loss in endotherms: Is the little red kaluta (Dasykaluta rosamondae) an exception or the rule?
It is a central paradigm of comparative physiology that the effect of humidity on evaporative water loss (EWL) is determined for most mammals and birds, in and below thermoneutrality, essentially by physics and is not under physiological regulation. Fick's law predicts that EWL should be inversely proportional to ambient relative humidity (RH) and linearly proportional to the water vapour pressure deficit (Δwvp) between animal and air. However, we show here for a small dasyurid marsupial, the little kaluta (Dasykaluta rosamondae), that EWL is essentially independent of RH (and Δwvp) at low RH (as are metabolic rate and thermal conductance). These results suggest regulation of a constant EWL independent of RH, a hitherto unappreciated capacity of endothermic vertebrates. Independence of EWL from RH conserves water and heat at low RH, and avoids physiological adjustments to changes in evaporative heat loss such as thermoregulation. Re-evaluation of previously published data for mammals and birds suggests that a lesser dependence of EWL on RH is observed more commonly than previously thought, suggesting that physiological independence of EWL of RH is not just an unusual capacity of a few species, such as the little kaluta, but a more general capability of many mammals and birds
Data Recovery from SCATHA Satellite
This document gives a brief description of the SCATHA (P78-2) satellite and consolidates into one location information relevant to the generation of the SCATHA Summary Data parameters for the European Space Agency (ESA), under ESTEC Contract No. 11006/94/NL/CC, and the National Aeronautics and Space Administration (NASA), under Grant No. NAGW-414 1. Included are descriptions of the instruments from which the Summary Data parameters are generated, their derivation, and archival. Any questions pertaining to the Summary Data parameters should be directed to Dr. Joseph Fennell
Managing Dynamic User Communities in a Grid of Autonomous Resources
One of the fundamental concepts in Grid computing is the creation of Virtual
Organizations (VO's): a set of resource consumers and providers that join
forces to solve a common problem. Typical examples of Virtual Organizations
include collaborations formed around the Large Hadron Collider (LHC)
experiments. To date, Grid computing has been applied on a relatively small
scale, linking dozens of users to a dozen resources, and management of these
VO's was a largely manual operation. With the advance of large collaboration,
linking more than 10000 users with a 1000 sites in 150 counties, a
comprehensive, automated management system is required. It should be simple
enough not to deter users, while at the same time ensuring local site autonomy.
The VO Management Service (VOMS), developed by the EU DataGrid and DataTAG
projects[1, 2], is a secured system for managing authorization for users and
resources in virtual organizations. It extends the existing Grid Security
Infrastructure[3] architecture with embedded VO affiliation assertions that can
be independently verified by all VO members and resource providers. Within the
EU DataGrid project, Grid services for job submission, file- and database
access are being equipped with fine- grained authorization systems that take VO
membership into account. These also give resource owners the ability to ensure
site security and enforce local access policies. This paper will describe the
EU DataGrid security architecture, the VO membership service and the local site
enforcement mechanisms Local Centre Authorization Service (LCAS), Local
Credential Mapping Service(LCMAPS) and the Java Trust and Authorization
Manager.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, LaTeX, 5 eps figures. PSN
TUBT00
Comparative physiology of Australian quolls (Dasyurus; Marsupialia)
Quolls (Dasyurus) are medium-sized carnivorous dasyurid marsupials. Tiger (3,840 g) and eastern quolls (780 g) are mesic zone species, northern quolls (516 g) are tropical zone, and chuditch (1,385 g) were once widespread through the Australian arid zone. We found that standard physiological variables of these quolls are consistent with allometric expectations for marsupials. Nevertheless, inter-specific patterns amongst the quolls are consistent with their different environments. The lower T ^sub b^ of northern quolls (34°C) may provide scope for adaptive hyperthermia in the tropics, and they use torpor for energy/water conservation, whereas the larger mesic species (eastern and tiger quolls) do not appear to. Thermolability varied from little in eastern (0.035°C °C^sup -1^) and tiger quolls (0.051°C ºC^sup -1^) to substantial in northern quolls (0.100°C ºC^sup -1^) and chuditch (0.146°C ºC^sup -1^), reflecting body mass and environment. Basal metabolic rate was higher for eastern quolls (0.662 ± 0.033 ml O^sub 2^ g^sup -1^ h^sup -1^), presumably reflecting their naturally cool environment. Respiratory ventilation closely matched metabolic demand, except at high ambient temperatures where quolls hyperventilated to facilitate evaporative heat loss; tiger and eastern quolls also salivated. A higher evaporative water loss for eastern quolls (1.43 ± 0.212 mg H^sub 2^O g^sup -1^ h^sup -1^) presumably reflects their more mesic distribution. The point of relative water economy was low for tiger (-1.3°C), eastern (-12.5°C) and northern (+3.3) quolls, and highest for the chuditch (+22.6°C). We suggest that these differences in water economy reflect lower expired air temperatures and hence lower respiratory evaporative water loss for the arid-zone chuditch relative to tropical and mesic quolls
Perspective: Accurate ro-vibrational calculations on small molecules
In what has been described as the fourth age of quantum chemistry, variational nuclear motion programs are now routinely being used to obtain the vibration-rotation levels and corresponding wavefunctions of small molecules to the sort of high accuracy demanded by comparison with spectroscopy. In this perspective, I will discuss the current state-of-the-art which, for example, shows that these calculations are increasingly competitive with measurements or, indeed, replacing them and thus becoming the primary source of data on key processes. To achieve this accuracy ab initio requires consideration of small effects, routinely ignored in standard calculations, such as those due to quantum electrodynamics. Variational calculations are being used to generate huge lists of transitions which provide the input for models of radiative transport through hot atmospheres and to fill in or even replace measured transition intensities. Future prospects such as the study of molecular states near dissociation, which can provide a link with low-energy chemical reactions, are discussed
Electromagnetic Launch to Space
Many advances in electromagnetic (EM) propulsion technology have occurred in recent years. Linear motor technology for low-velocity and high-mass applications is being developed for naval catapults and missile launchers. Such technology could serve as the basis for the launch of a first-stage booster launch -for example, as suggested some years ago by the US National Aeronautics and Space Administration (NASA) in the Maglifter concept. For higher velocities, experimental laboratory railguns have demonstrated launch velocities of 2-3 km/s and muzzle energies greater than 10 MJ. The extension of this technology to the muzzle velocities (≥ 7500 m/s) and energies (hundreds of megajoules) needed for the direct launch of payloads into orbit is very challenging but may not be impossible. For launch to orbit, long launchers (> 1000 m) would need to operate at accelerations > 1000 G to reach the required velocities, so it would only be possible to launch rugged payloads, such as fuel, water, and material. This paper provides an overview of these concepts and includes a summary of the recent advances made in this area. PACS numbers: 96.12. Hg, 98.35.Eg, 94.30.Kq, 94.05.Rx, 94.20.Fg, 94.20.wc, 94.20.w
The Allometry of Daily Energy Expenditure in Hummingbirds: An Energy Budget Approach
1. Within-clade allometric relationships represent standard laws of scaling between energy and size, and their outliers provide new avenues for physiological and ecological research. According to the metabolic-level boundaries hypothesis, metabolic rates as a function of mass are expected to scale closer to 0.67 when driven by surface-related processes (e.g. heat or water flux), while volume-related processes (e.g. activity) generate slopes closer to one.
2. In birds, daily energy expenditure (DEE) scales with body mass (M) in the relationship log (DEE)=2.35+0.68×log (M), consistent with surface-level processes driving the relationship. However, taxon-specific patterns differ from the scaling slope of all birds.
3. Hummingbirds have the highest mass-specific metabolic rates among all vertebrates. Previous studies on a few hummingbird species, without accounting for the phylogeny, estimated that the DEE–body mass relationship for hummingbirds was log (DEE)=1.72+1.21×log (M). In Contrast to the theoretical expectations, this slope \u3e1 indicates that larger hummingbirds are less metabolically efficient than smaller hummingbirds.
4. We collected DEE and mass data for 12 hummingbird species, which, combined with published data, represented 17 hummingbird species in eight of nine hummingbird clades over a sixfold size range of body size (2.7–17.5 g).
5. After accounting for phylogenetic relatedness, we found DEE scales with body mass as log(DEE)=2.04+0.95×log (M). This slope of 0.95 is lower than previously estimated for hummingbirds, but much higher than the slope for all birds (0.68). The high slopes of torpor, hovering and flight potentially explain the high interspecific DEE slope for hummingbirds compared to other endotherms
The “minimal boundary curve for endothermy” as a predictor of heterothermy in mammals and birds: a review
According to the concept of the “minimal boundary curve for endothermy”, mammals and birds with a basal metabolic rate (BMR) that falls below the curve are obligate heterotherms and must enter torpor. We examined the reliability of the boundary curve (on a double log plot transformed to a line) for predicting torpor as a function of body mass and BMR for birds and several groups of mammals. The boundary line correctly predicted heterothermy in 87.5% of marsupials (n = 64), 94% of bats (n = 85) and 82.3% of rodents (n = 157). Our analysis shows that the boundary line is not a reliable predictor for use of torpor. A discriminate analysis using body mass and BMR had a similar predictive power as the boundary line. However, there are sufficient exceptions to both methods of analysis to suggest that the relationship between body mass, BMR and heterothermy is not a causal one. Some homeothermic birds (e.g. silvereyes) and rodents (e.g. hopping mice) fall below the boundary line, and there are many examples of heterothermic species that fall above the boundary line. For marsupials and bats, but not for rodents, there was a highly significant phylogenetic pattern for heterothermy, suggesting that taxonomic affiliation is the biggest determinant of heterothermy for these mammalian groups. For rodents, heterothermic species had lower BMRs than homeothermic species. Low BMR and use of torpor both contribute to reducing energy expenditure and both physiological traits appear to be a response to the same selective pressure of fluctuating food supply, increasing fitness in endothermic species that are constrained by limited energy availability. Both the minimal boundary line and discriminate analysis were of little value for predicting the use of daily torpor or hibernation in heterotherms, presumably as both daily torpor and hibernation are precisely controlled processes, not an inability to thermoregulate
Multiple adhesin proteins on the cell surface of Streptococcus gordonii are involved in adhesion to human fibronectin
Adhesion of bacterial cells to fibronectin (FN) is thought to be a pivotal step in the pathogenesis of invasive infectious diseases. Viridans group streptococci such as Streptococcus gordonii are considered commensal members of the oral microflora, but are important pathogens in infective endocarditis. S. gordonii expresses a battery of cell-surface adhesins that act alone or in concert to bind host receptors. Here, we employed molecular genetic approaches to determine the relative contributions of five known S. gordonii surface proteins to adherence to human FN. Binding levels to FN by isogenic mutants lacking Hsa glycoprotein were reduced by 70 %, while mutants lacking CshA and CshB fibrillar proteins showed approximately 30 % reduced binding. By contrast, disruption of antigen I/II adhesin genes sspA and sspB in a wild-type background did not result in reduced FN binding. Enzymic removal of sialic acids from FN led to reduced S. gordonii DL1 adhesion (>50 %), but did not affect binding by the hsa mutant, indicating that Hsa interacts with sialic acid moieties on FN. Conversely, desialylation of FN did not affect adherence levels of Lactococcus lactis cells expressing SspA or SspB polypeptides. Complementation of the hsa mutant partially restored adhesion to FN. A model is proposed for FN binding by S. gordonii in which Hsa and CshA/CshB are primary adhesins, and SspA or SspB play secondary roles. Understanding the basis of oral streptococcal interactions with FN will provide a foundation for development of new strategies to control infective endocarditis
- …