259 research outputs found

    Perspectives on Electric Machines with Cryogenic Cooling

    Get PDF
    Cryogenic cooling is a well-established and expanding technology. In the field of electric machines, it allows the construction of more efficient machines with a high power density. This paper addresses the main cooling technologies and their impact on cryogenic machine construction, providing perspective for their use in future electrical machines. Although cost and safety issues of cryogenic systems are still holding back the uptake of cryogenic electric motors and generators, research in this field should provide significant improvements and promote their use at different levels

    Development and laboratory testing of a self-excited synchronous machines without permanent magnets

    Get PDF
    Today, self-excited synchronous machines are the object of increasing interest because they use neither brushes nor permanent magnets. In fact, the price of rare earth metals is considerably high and still raising. This is the main reason why researchers are looking for suitable alternatives to permanent magnets in the construction of rotating electrical machinery. This paper deals with the design and laboratory testing of a synchronous machine with an efficient layout and an economic construction. The proposed self-excited machine exploits the space harmonics of the magneto-motive force to produce the excitation field. The model analysis is based on the computation of the back EMFs that are associated to the magneto motive force components. The mathematical model suggests an easy way to decouple the rotor windings. The machine has been built and experimental tests have been performed in order to validate the electrical behavior

    AO@SW with Vrala: Simulations and Tests

    Get PDF
    Designed to actuate large correction forces on small spatial scales for the next generation deformable mirrors, VRALA is the ideal candidate for the Adaptive Optics actuators at visible wavelengths. Using its electric characteristics variations, properly supplying current commands, and optimizing the magnetic circuit geometry, the required force is delivered with a correction bandwidth of 2 kHz, and a 25 mm actuation density can be achieved. The dual-stator, single-mover soft magnetic composite core provides unprecedented performances with a negligible thermal impact. Pre-shaping the coil currents required to deliver a given stroke greatly simpli es the control system. Equipped with an inductance measure circuit, the current generator also provides the control system with an accurate feed-back signal. The Comsol non-linear model of VRALA allows to de ne the optimized geometry, to compute the dynamic response to the closed-loop control system, and to calculate the circuit inductance. The tests performed on a preliminary prototype, built according to the Comsol analyses, match the design results in terms of power and force

    Search for Coherent Elastic Scattering of Solar ⁸B Neutrinos in the XENON1T Dark Matter Experiment

    Get PDF
    We report on a search for nuclear recoil signals from solar 8B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6  keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant 8B neutrinolike excess is found in an exposure of 0.6  t×y. For the first time, we use the nondetection of solar neutrinos to constrain the light yield from 1–2 keV nuclear recoils in liquid xenon, as well as nonstandard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 and 11  GeV c−2 by as much as an order of magnitude

    Search for inelastic scattering of WIMP dark matter in XENON1T

    Get PDF
    We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off 129Xe is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV deexcitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.83 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2σ. A profile-likelihood ratio analysis is used to set upper limits on the cross section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100  GeV/c2, with the strongest upper limit of 3.3×10−39  cm2 for 130  GeV/c2 WIMPs at 90% confidence level

    An approximate likelihood for nuclear recoil searches with XENON1T data

    Get PDF
    The XENON collaboration has published stringent limits on specific dark matter – nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 t-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method we present. The approximate likelihood is constructed in bins of reconstructed energy, profiled along the signal expectation in each bin. This approach can be used to compute an approximate likelihood and therefore most statistical results for any nuclear recoil spectrum. Computing approximate results with this method is approximately three orders of magnitude faster than the likelihood used in the original publications of XENON1T, where limits were set for specific families of recoil spectra. Using this same method, we include toy Monte Carlo simulation-derived binwise likelihoods for the upcoming XENONnT experiment that can similarly be used to assess the sensitivity to arbitrary nuclear recoil signatures in its eventual 20 t-year exposure

    Application and modeling of an online distillation method to reduce krypton and argon in XENON1T

    Get PDF
    corecore