244 research outputs found

    Post University On-the-Job Training for Engineers

    Get PDF
    Our national need for qualified scientists and engineers is greater now than at any other time in our history. Fortunately, we can point with pride to this need as a measure of the impact of science and technology on our way of life. In effect, we have made such rapid strides In advancing established sciences and in opening new technological fields that we have proved the value of the scientist and engineer to society, and, as a-result, have created an expanding demand for their services which we must now attempt to satisfy. This demand we face is also due to the changing skills and high degree of specialization required to perform in these new technological fields. The colleges and universities are doing their part to provide current graduates with a modern technical foundation, but we cannot afford to ignore the thousands of experienced engineers and scientists already employed by private industry and government. As employers, we have an obligation to these men and women to see that they are provided with an understanding of the latest advances that modern technology has to offer; that we develop them in particular specialty areas characteristic of a given field of work; and, equally important, that we assist them in the transition from one field to another as the technological emphasis shifts. Practically all technological industries have experienced and continue to experience rapid changes in their activities. The aerospace business, in particular, has been characterized by extremely rapid, in fact revolutionary, changes during the relatively short period of its existence0 At the National Aeronautics and Space Administration, successor to the National Advisory Committee for Aeronautics, for example, we have encountered the fun impact of a changing science and technology. Indeed, as a research organization, we have undoubtedly contributed, in some measure, to this change. Within the NASAs Lewis Research Center, we have approximately 800 research scientists and engineers who have matured professionally in an environment which is essentially one of continuous learning - an experience which comes close to being a form of post graduate training in itself. This environment, in addition to providing continuous evolutionary changes, has also provided two major revolutions which have made this development picture more complex. We will describe these environmental changes which have occurred at the Lewis Research Center and discuss the various techniques and programs we have employed to provide for the professional development of our staff. The Lewis Research Center has had an Interesting and exciting l8-year history of aerospace propulsion research and development. It began during the early years of World War II as an expansion of the Power Plant Division of the NCA Langley Center with the mission of conducting research required for the development of improved reciprocating engines and to study the associated problems of subsonic propulsion aerodynamics, It was only a few years later, however, that turbojet and ramjet propulsion and supersonic flight research became our main concern. This transition to jet type engines and higher speeds was our first major technological change. The aerodynamics of propellers became the aerodynamics of high speed turbine and compressor blades; the fuel ignition and carbon deposition problems were transferred from a cyclical or Intermittent high compression combustion chamber to a continuous combustion zone within a thin-walled metal shell; aerodynamics problems were thrust into the supersonic range; and high temperature materials began to play an increasingly critical role. Although this transition still required the same basic knowledge and principles as before, the new engine types did involve a different emphasis and variety of consideration not generally familiar to our scientists and engineers

    Early Detection of Wild Rocket Tracheofusariosis Using Hyperspectral Image-Based Machine Learning

    Get PDF
    Fusarium oxysporum f. sp. raphani is responsible for wilting wild rocket (Diplotaxis tenuifolia L. [D.C.]). A machine learning model based on hyperspectral data was constructed to monitor disease progression. Thus, pathogenesis after artificial inoculation was monitored over a 15-day period by symptom assessment, qPCR pathogen quantification, and hyperspectral imaging. The host colonization by a pathogen evolved accordingly with symptoms as confirmed by qPCR. Spectral data showed differences as early as 5-day post infection and 12 hypespectral vegetation indices were selected to follow disease development. The hyperspectral dataset was used to feed the XGBoost machine learning algorithm with the aim of developing a model that discriminates between healthy and infected plants during the time. The multiple cross-prediction strategy of the pixel-level models was able to detect hyperspectral disease profiles with an average accuracy of 0.8. For healthy pixel detection, the mean Precision value was 0.78, the Recall was 0.88, and the F1 Score was 0.82. For infected pixel detection, the average evaluation metrics were Precision: 0.73, Recall: 0.57, and F1 Score: 0.63. Machine learning paves the way for automatic early detection of infected plants, even a few days after infection

    High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine

    Get PDF
    An investigation of the cooling of an 18-cylinder, twin-row, radial, air-cooled engine in a high-performance pursuit airplane has been conducted for variable engine and flight conditions at altitudes ranging from 5000 to 35,000 feet in order to provide a basis for predicting high-altitude cooling performance from sea-level or low altitude experimental results. The engine cooling data obtained were analyzed by the usual NACA cooling-correlation method wherein cylinder-head and cylinder-barrel temperatures are related to the pertinent engine and cooling-air variables. A theoretical analysis was made of the effect on engine cooling of the change of density of the cooling air across the engine (the compressibility effect), which becomes of increasing importance as altitude is increased. Good agreement was obtained between the results of the theoretical analysis and the experimental data

    A preliminary study on metabolome profiles of buffalo milk and corresponding mozzarella cheese: Safeguarding the authenticity and traceability of protected status buffalo dairy products

    Get PDF
    The aim of this study is to combine advanced GC-MS and metabolite identification in a robust and repeatable technology platform to characterize the metabolome of buffalo milk and mozzarella cheese. The study utilized eleven dairies located in a protected designation of origin (PDO) region and nine dairies located in non-PDO region in Italy. Samples of raw milk (100 mL) and mozzarella cheese (100 g) were obtained from each dairy. A total of 185 metabolites were consistently detected in both milk and mozzarella cheese. The PLS-DA score plots clearly differentiated PDO and non-PDO milk and mozzarella samples. For milk samples, it was possible to divide metabolites into two classes according to region: those with lower concentrations in PDO samples (galactopyranoside, hydroxybuthyric acid, allose, citric acid) and those with lower concentrations in non-PDO samples (talopyranose, pantothenic acid, mannobiose, etc.,). The same was observed for mozzarella samples with the proportion of some metabolites (talopyranose, 2, 3-dihydroxypropyl icosanoate, etc.,) higher in PDO samples while others (tagatose, lactic acid dimer, ribitol, etc.,) higher in non-PDO samples. The findings establish the utility of GC-MS together with mass spectral libraries as a powerful technology platform to determine the authenticity, and create market protection, for “Mozzarella di Bufala Campana.

    Emergency transapical mitral valve-in-valve implantation for bioprosthesis failure: Transapical implantation of an Edwards Sapien-XT in a dysfunctional mitral bioprosthesis in a critical patient

    Get PDF
    Background: Valve-in-Valve (VIV) Transcatheter Aortic Valve Replacement (TAVR) is now the treatment of choice in high-surgical-risk patients with failing aortic bioprosthesis. Although less performed, VIV-Transcatheter Mitral Valve Replacement (TMVR) is a valid treatment option for selected high-risk patients with degenerated mitral bioprostheses. Several cases of elective ViV- TAVR and -TMVR have been reported but only few were performed in critical hemodynamic conditions. Case presentation: We report the case of a patient underwent balloon-expandable transapical mitral valve-in-valve implantation in an emergency setting due to a severe stenosis of a bioprosthesis in mitral position. The procedure was successfully performed, with no residual mitral regurgitation or paravalvular leaks, and uneventful. Conclusion: Transcatheter transapical mitral valve-in-valve implantation could represent a feasible and effective strategy even in critical setting

    An Algebraic Approach for Decoding Spread Codes

    Full text link
    In this paper we study spread codes: a family of constant-dimension codes for random linear network coding. In other words, the codewords are full-rank matrices of size (k x n) with entries in a finite field F_q. Spread codes are a family of optimal codes with maximal minimum distance. We give a minimum-distance decoding algorithm which requires O((n-k)k^3) operations over an extension field F_{q^k}. Our algorithm is more efficient than the previous ones in the literature, when the dimension k of the codewords is small with respect to n. The decoding algorithm takes advantage of the algebraic structure of the code, and it uses original results on minors of a matrix and on the factorization of polynomials over finite fields

    Phosphodiesterase 3B Is Localized in Caveolae and Smooth ER in Mouse Hepatocytes and Is Important in the Regulation of Glucose and Lipid Metabolism

    Get PDF
    Cyclic nucleotide phosphodiesterases (PDEs) are important regulators of signal transduction processes mediated by cAMP and cGMP. One PDE family member, PDE3B, plays an important role in the regulation of a variety of metabolic processes such as lipolysis and insulin secretion. In this study, the cellular localization and the role of PDE3B in the regulation of triglyceride, cholesterol and glucose metabolism in hepatocytes were investigated. PDE3B was identified in caveolae, specific regions in the plasma membrane, and smooth endoplasmic reticulum. In caveolin-1 knock out mice, which lack caveolae, the amount of PDE3B protein and activity were reduced indicating a role of caveolin-1/caveolae in the stabilization of enzyme protein. Hepatocytes from PDE3B knock out mice displayed increased glucose, triglyceride and cholesterol levels, which was associated with increased expression of gluconeogenic and lipogenic genes/enzymes including, phosphoenolpyruvate carboxykinase, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein 1c and hydroxyl-3-methylglutaryl coenzyme A reductase. In conclusion, hepatocyte PDE3B is localized in caveolae and smooth endoplasmic reticulum and plays important roles in the regulation of glucose, triglyceride and cholesterol metabolism. Dysregulation of PDE3B could have a role in the development of fatty liver, a condition highly relevant in the context of type 2 diabetes

    Inhaled tolafentrine reverses pulmonary vascular remodeling via inhibition of smooth muscle cell migration

    Get PDF
    BACKGROUND: The aim of the study was to assess the chronic effects of combined phosphodiesterase 3/4 inhibitor tolafentrine, administered by inhalation, during monocrotaline-induced pulmonary arterial hypertension (PAH) in rats. METHODS: CD rats were given a single subcutaneous injection of monocrotaline to induce PAH. Four weeks after, rats were subjected to inhalation of tolafentrine or sham nebulization in an unrestrained, whole body aerosol exposure system. In these animals (i) the acute pulmonary vasodilatory efficacy of inhaled tolafentrine (ii) the anti-remodeling effect of long-term inhalation of tolafentrine (iii) the effects of tolafentrine on the expression profile of 96 genes encoding cell adhesion and extracellular matrix regulation were examined. In addition, the inhibitory effect of tolafentrine on ex vivo isolated pulmonary artery SMC cell migration was also investigated. RESULTS: Monocrotaline injection provoked severe PAH (right ventricular systolic pressure increased from 25.9 ± 4.0 to 68.9 ± 3.2 after 4 weeks and 74.9 ± 5.1 mmHg after 6 weeks), cardiac output depression and right heart hypertrophy. The media thickness of the pulmonary arteries and the proportion of muscularization of small precapillary resistance vessels increased dramatically, and the migratory response of ex-vivo isolated pulmonary artery smooth muscle cells (PASMC) was increased. Micro-arrays and subsequent confirmation with real time PCR demonstrated upregulation of several extracellular matrix regulation and adhesion genes, such as matrixmetalloproteases (MMP) 2, 8, 9, 10, 11, 12, 20, Icam, Itgax, Plat and serpinb2. When chronically nebulized from day 28 to 42 (12 daily aerosol maneuvers), after full establishment of severe pulmonary hypertension, tolafentrine reversed about 60% of all hemodynamic abnormalities, right heart hypertrophy and monocrotaline-induced structural lung vascular changes, including the proportion of pulmonary artery muscularization. The upregulation of extracellular matrix regulation and adhesion genes was reduced by nearly 80% by inhalation of the tolafentrine. When assessed in vitro, tolafentrine blocked the enhanced PASMC migratory response. CONCLUSION: In conclusion, we demonstrate for the first time that inhalation of combined PDE3/4 inhibitor reverses pulmonary hypertension fully developed in response to monocrotaline in rats. This "reverse-remodeling" effect includes structural changes in the lung vascular wall and key molecular pathways of matrix regulation, concomitant with 60% normalization of hemodynamics

    Expression and Regulation of Cyclic Nucleotide Phosphodiesterases in Human and Rat Pancreatic Islets

    Get PDF
    As shown by transgenic mouse models and by using phosphodiesterase 3 (PDE3) inhibitors, PDE3B has an important role in the regulation of insulin secretion in pancreatic β-cells. However, very little is known about the regulation of the enzyme. Here, we show that PDE3B is activated in response to high glucose, insulin and cAMP elevation in rat pancreatic islets and INS-1 (832/13) cells. Activation by glucose was not affected by the presence of diazoxide. PDE3B activation was coupled to an increase as well as a decrease in total phosphorylation of the enzyme. In addition to PDE3B, several other PDEs were detected in human pancreatic islets: PDE1, PDE3, PDE4C, PDE7A, PDE8A and PDE10A. We conclude that PDE3B is activated in response to agents relevant for β-cell function and that activation is linked to increased as well as decreased phosphorylation of the enzyme. Moreover, we conclude that several PDEs are present in human pancreatic islets
    • …
    corecore