7,451 research outputs found

    The tail of the Jurassic fish Leedsichthys problematicus (Osteichthyes: Actinopterygii) collected by Alfred Nicholson Leeds - an example of the importance of historical records in palaeontology

    Get PDF
    The specimen of the tail of <i>Leedsichthys problematicus</i>, now in The Natural History Museum, London, was one of the most spectacular fossil vertebrates from the Oxford Clay Formation of Peterborough, but as an isolated find it shares no bones in common with the holotype of the genus and species. However, a letter from Alfred Nicholson Leeds and related documents cast valuable new light on the excavation of the tail, indicating that it was discovered with cranial bones, gill-rakers, and two pectoral fins, thereby including elements that can potentially be compared with those of the holotype. The documents also clearly indicate that The Natural History Museum's specimen is not part of the same individual as any other numbered specimen of <i>Leedsichthys</i> as had been speculated on other occasions. The maximum size of the animal represented by The Natural History Museum's specimen was possibly around 9 metres, considerably less than previous estimates of up to 27.6 metres for <i>Leedsichthys</i>. Historical documentary evidence should therefore be rigorously checked both when studying historical specimens in science, and in preparing text for museum display labels

    Convective–reactive nucleosynthesis of K, Sc, Cl and p-process isotopes in O–C shell mergers

    Get PDF
    © 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. We address the deficiency of odd-Z elements P, Cl, K and Sc in Galactic chemical evolution models through an investigation of the nucleosynthesis of interacting convective O and C shells in massive stars. 3D hydrodynamic simulations of O-shell convection with moderate C-ingestion rates show no dramatic deviation from spherical symmetry. We derive a spherically averaged diffusion coefficient for 1D nucleosynthesis simulations, which show that such convective-reactive ingestion events can be a production site for P, Cl, K and Sc. An entrainment rate of 10-3M⊙s-1features overproduction factors OPs≈ 7. Full O-C shell mergers in our 1D stellar evolution massive star models have overproduction factors OPm> 1 dex but for such cases 3D hydrodynamic simulations suggest deviations from spherical symmetry. γ - process species can be produced with overproduction factors of OPm> 1 dex, for example, for130, 132Ba. Using the uncertain prediction of the 15M⊙, Z = 0.02 massive star model (OPm≈ 15) as representative for merger or entrainment convective-reactive events involving O- and C-burning shells, and assume that such events occur in more than 50 per cent of all stars, our chemical evolution models reproduce the observed Galactic trends of the odd-Z elements

    Sensitivity of shelf sea marine ecosystems to temporal resolution of meteorological forcing

    Get PDF
    Phytoplankton phenology and the length of the growing season have implications that cascade through trophic levels and ultimately impact the global carbon flux to the seafloor. Coupled hydrodynamic‐ecosystem models must accurately predict timing and duration of phytoplankton blooms in order to predict the impact of environmental change on ecosystem dynamics. Meteorological conditions, such as solar irradiance, air temperature and wind‐speed are known to strongly impact the timing of phytoplankton blooms. Here, we investigate the impact of degrading the temporal resolution of meteorological forcing (wind, surface pressure, air and dew point temperatures) from 1‐24 hours using a 1D coupled hydrodynamic‐ecosystem model at two contrasting shelf‐sea sites: one coastal intermediately stratified site (L4) and one offshore site with constant summer stratification (CCS). Higher temporal resolutions of meteorological forcing resulted in greater wind stress acting on the sea surface increasing water column turbulent kinetic energy. Consequently, the water column was stratified for a smaller proportion of the year producing a delayed onset of the spring phytoplankton bloom by up to 6 days, often earlier cessation of the autumn bloom, and shortened growing season of up to 23 days. Despite opposing trends in gross primary production between sites, a weakened microbial loop occurred with higher meteorological resolution due to reduced dissolved organic carbon production by phytoplankton caused by differences in resource limitation: light at CCS and nitrate at L4. Caution should be taken when comparing model runs with differing meteorological forcing resolutions. Recalibration of hydrodynamic‐ecosystem models may be required if meteorological resolution is upgraded

    Octahedral Tilt Instability of ReO_3-type Crystals

    Full text link
    The octahedron tilt transitions of ABX_3 perovskite-structure materials lead to an anti-polar (or antiferroelectric) arrangement of dipoles, with the low temperature structure having six sublattices polarized along various crystallographic directions. It is shown that an important mechanism driving the transition is long range dipole-dipole forces acting on both displacive and induced parts of the anion dipole. This acts in concert with short range repulsion, allowing a gain of electrostatic (Madelung) energy, both dipole-dipole and charge-charge, because the unit cell shrinks when the hard ionic spheres of the rigid octahedron tilt out of linear alignment.Comment: 4 page with 3 figures included; new version updates references and clarifies the argument

    Common Causes and The Direction of Causation

    Get PDF
    Is the common cause principle merely one of a set of useful heuristics for discovering causal relations, or is it rather a piece of heavy duty metaphysics, capable of grounding the direction of causation itself? Since the principle was introduced in Reichenbach’s groundbreaking work The Direction of Time (1956), there have been a series of attempts to pursue the latter program—to take the probabilistic relationships constitutive of the principle of the common cause and use them to ground the direction of causation. These attempts have not all explicitly appealed to the principle as originally formulated; it has also appeared in the guise of independence conditions, counterfactual overdetermination, and, in the causal modelling literature, as the causal markov condition. In this paper, I identify a set of difficulties for grounding the asymmetry of causation on the principle and its descendents. The first difficulty, concerning what I call the vertical placement of causation, consists of a tension between considerations that drive towards the macroscopic scale, and considerations that drive towards the microscopic scale—the worry is that these considerations cannot both be comfortably accommodated. The second difficulty consists of a novel potential counterexample to the principle based on the familiar Einstein Podolsky Rosen (EPR) cases in quantum mechanics
    • …
    corecore