5,986 research outputs found
Parallel eigenanalysis of finite element models in a completely connected architecture
A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi) = (M)(phi)(omega), where (K) and (M) are of order N, and (omega) is order of q. The concurrent solution of the eigenproblem is based on the multifrontal/modified subspace method and is achieved in a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm was successfully implemented on a tightly coupled multiple-instruction multiple-data parallel processing machine, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macrotasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. A parallel finite element dynamic analysis program, p-feda, is documented and the performance of its subroutines in parallel environment is analyzed
Gyrokinetic Large Eddy Simulations
The Large Eddy Simulation (LES) approach is adapted to the study of plasma
microturbulence in a fully three-dimensional gyrokinetic system. Ion
temperature gradient driven turbulence is studied with the {\sc GENE} code for
both a standard resolution and a reduced resolution with a model for the
sub-grid scale turbulence. A simple dissipative model for representing the
effect of the sub-grid scales on the resolved scales is proposed and tested.
Once calibrated, the model appears to be able to reproduce most of the features
of the free energy spectra for various values of the ion temperature gradient
Free energy cascade in gyrokinetic turbulence
In gyrokinetic theory, the quadratic nonlinearity is known to play an
important role in the dynamics by redistributing (in a conservative fashion)
the free energy between the various active scales. In the present study, the
free energy transfer is analyzed for the case of ion temperature gradient
driven turbulence. It is shown that it shares many properties with the energy
transfer in fluid turbulence. In particular, one finds a forward (from large to
small scales), extremely local, and self-similar cascade of free energy in the
plane perpendicular to the background magnetic field. These findings shed light
on some fundamental properties of plasma turbulence, and encourage the
development of large eddy simulation techniques for gyrokinetics.Comment: 4 pages, 2 Postscript figure
Three-Flavor Partially Quenched Chiral Perturbation Theory at NNLO for Meson Masses and Decay Constants
We discuss Partially Quenched Chiral Perturbation Theory (PQPT) and
possible fitting strategies to Lattice QCD data at next-to-next-to-leading
order (NNLO) in the mesonic sector. We also present a complete calculation of
the masses of the charged pseudoscalar mesons, in the supersymmetric
formulation of PQPT. Explicit analytical results are given for up to
three nondegenerate sea quark flavors, along with the previously unpublished
expression for the pseudoscalar meson decay constant for three nondegenerate
sea quark flavors. The numerical analysis in this paper demonstrates that the
corrections at NNLO are sizable, as expected from earlier work.Comment: 31 pages, numerical discussion extended including convergence NLO to
NNL
QUANTITATION OF HUMAN RED BLOOD CELL FIXATION BY GLUTARALDEHYDE
The uptake of glutaraldehyde by human red blood cells has been measured as a function of time by a freezing point osmometer. The rate of attachment of glutaraldehyde to the cell proteins is high over the first hour, declining to zero over a period of a few days. The number of glutaraldehyde molecules cross-linking with each hemoglobin molecule is of the order of 200, in reasonable agreement with the calculated number of attachment sites. The cell membrane is immediately highly permeable to glutaraldehyde. Selective permeability to ions is lost during fixation. Ionic equilibrium is obtained only after a few hours. An optimum fixation technique for shape preservation is suggested
Size Effect in Fracture: Roughening of Crack Surfaces and Asymptotic Analysis
Recently the scaling laws describing the roughness development of fracture
surfaces was proposed to be related to the macroscopic elastic energy released
during crack propagation [Mor00]. On this basis, an energy-based asymptotic
analysis allows to extend the link to the nominal strength of structures. We
show that a Family-Vicsek scaling leads to the classical size effect of linear
elastic fracture mechanics. On the contrary, in the case of an anomalous
scaling, there is a smooth transition from the case of no size effect, for
small structure sizes, to a power law size effect which appears weaker than the
linear elastic fracture mechanics one, in the case of large sizes. This
prediction is confirmed by fracture experiments on wood.Comment: 9 pages, 6 figures, accepted for publication in Physical Review
Ribonucleoparticle-independent transport of proteins into mammalian microsomes
There are at least two different mechanisms for the transport of secretory proteins into the mammalian endoplasmic reticulum. Both mechanisms depend on the presence of a signal peptide on the respective precursor protein and involve a signal peptide receptor on the cis-side and signal peptidase on the trans-side of the membrane. Furthermore, both mechanisms involve a membrane component with a cytoplasmically exposed sulfhydryl. The decisive feature of the precursor protein with respect to which of the two mechanisms is used is the chain length of the polypeptide. The critical size seems to be around 70 amino acid residues (including the signal peptide). The one mechanism is used by precursor proteins larger than about 70 amino acid residues and involves two cytosolic ribonucleoparticles and their receptors on the microsomal surface. The other one is used by small precursor proteins and relies on the mature part within the precursor molecule and a cytosolic ATPase
- …