11,895 research outputs found

    Di-jet hadron pair correlation in a hydrodynamical model with a quenching jet

    Full text link
    In jet quenching, a hard QCD parton, before fragmenting into a jet of hadrons, deposits a fraction of its energy in the medium, leading to suppressed production of high-pTp_T hadrons. Assuming that the deposited energy quickly thermalizes, we simulate the subsequent hydrodynamic evolution of the QGP fluid. Hydrodynamic evolution and subsequent particle emission depend on the jet trajectories. Azimuthal distribution of excess π−\pi^- due to quenching jet, averaged over all the trajectories, reasonably well reproduce the di-hadron correlation as measured by the STAR and PHENIX collaboration in central and in peripheral Au+Au collisions.Comment: 5 pages, 4 figures. Some minor corrections are made in the revised manuscrip

    keV sterile neutrino dark matter in gauge extensions of the standard model

    Full text link
    It is known that a keV scale sterile neutrino is a good warm dark matter candidate. We study how this possibility could be realized in the context of gauge extensions of the standard model. The na\"ive expectation leads to large thermal overproduction of sterile neutrinos in this setup. However, we find that it is possible to use out-of-equilibrium decay of the other right-handed neutrinos of the model to dilute the present density of the keV sterile neutrinos and achieve the observed dark matter density. We present the universal requirements that should be satisfied by the gauge extensions of the standard model, containing right-handed neutrinos, to be viable models of warm dark matter, and provide a simple example in the context of the left-right symmetric model.Comment: RevTex, 13 pages, 5 figures; journal version (corrected typos

    Dangerous Angular KK/Glueball Relics in String Theory Cosmology

    Full text link
    The presence of Kaluza-Klein particles in the universe is a potential manifestation of string theory cosmology. In general, they can be present in the high temperature bath of the early universe. In particular examples, string theory inflation often ends with brane-antibrane annihilation followed by the energy cascading through massive closed string loops to KK modes which then decay into lighter standard model particles. However, massive KK modes in the early universe may become dangerous cosmological relics if the inner manifold contains warped throat(s) with approximate isometries. In the complimentary picture, in the AdS/CFT dual gauge theory with extra symmetries, massive glueballs of various spins become the dangerous cosmological relics. The decay of these angular KK modes/glueballs, located around the tip of the throat, is caused by isometry breaking which results from gluing the throat to the compact CY manifold. We address the problem of these angular KK particles/glueballs, studying their interactions and decay channels, from the theory side, and the resulting cosmological constraints on the warped compactification parameters, from the phenomenology side. The abundance and decay time of the long-lived non-relativistic angular KK modes depend strongly on the parameters of the warped geometry, so that observational constraints rule out a significant fraction of the parameter space. In particular, the coupling of the angular KK particles can be weaker than gravitational.Comment: 58 pages, 11 figures, published versio

    Elliptic Flow from a Transversally Thermalized Fireball

    Full text link
    The agreement of elliptic flow data at RHIC at central rapidity with the hydrodynamic model has led to the conclusion of very rapid thermalization. This conclusion is based on the intuitive argument that hydrodynamics, which assumes instantaneous local thermalization, produces the largest possible elliptic flow values and that the data seem to saturate this limit. We here investigate the question whether incompletely thermalized viscous systems may actually produce more elliptic flow than ideal hydrodynamics. Motivated by the extremely fast primordial longitudinal expansion of the reaction zone, we investigate a toy model which exhibits thermalization only in the transverse directions but undergoes collisionless free-streaming expansion in the longitudinal direction. For collisions at RHIC energies, elliptic flow results from the model are compared with those from hydrodynamics. With the final particle yield and \kt-distribution fixed, the transversally thermalized model is shown not to be able to produce the measured amount of elliptic flow. This investigation provides further support for very rapid local kinetic equilibration at RHIC. It also yields interesting novel results for the elliptic flow of massless particles such as direct photons.Comment: revtex4, 15 pages + 10 embedded EPS figure

    A fully relativistic lattice Boltzmann algorithm

    Full text link
    Starting from the Maxwell-Juettner equilibrium distribution, we develop a relativistic lattice Boltzmann (LB) algorithm capable of handling ultrarelativistic systems with flat, but expanding, spacetimes. The algorithm is validated through simulations of quark-gluon plasma, yielding excellent agreement with hydrodynamic simulations. The present scheme opens the possibility of transferring the recognized computational advantages of lattice kinetic theory to the context of both weakly and ultra-relativistic systems.Comment: 12 pages, 8 figure

    Quark Recombination and Heavy Quark Diffusion in Hot Nuclear Matter

    Full text link
    We discuss resonance recombination for quarks and show that it is compatible with quark and hadron distributions in local thermal equilibrium. We then calculate realistic heavy quark phase space distributions in heavy ion collisions using Langevin simulations with non-perturbative T-matrix interactions in hydrodynamic backgrounds. We hadronize the heavy quarks on the critical hypersurface given by hydrodynamics after constructing a criterion for the relative recombination and fragmentation contributions. We discuss the influence of recombination and flow on the resulting heavy meson and single electron R_AA and elliptic flow. We will also comment on the effect of diffusion of open heavy flavor mesons in the hadronic phase.Comment: Contribution to Quark Matter 2011, submitted to J.Phys.G; 4 pages, 5 figure

    Relationship Between the Azimuthal Dependencies of Nuclear Modification Factor and Ridge Yield

    Full text link
    The azimuthal angular dependence of the nuclear modification factor R_{AA}(p_T, phi,N_{part}) recently obtained by PHENIX is related at low p_T to the trigger phi dependence of the ridge yield as measured by STAR in a framework in which the azimuthal anisotropy is driven by semihard scattering near the surface. Careful consideration of the initial geometry leads to the determination of a surface segment in which the production of semihard partons are responsible for the phi dependence of the inclusive distribution on the one hand, and for the angular correlation in ridge phenomenology on the other. With v_2 also being well reproduced along with R_{AA} and ridge yield, all relevant phi dependencies in heavy-ion collisions can now be understood in a unified description that emphasizes the ridge production whether or not a trigger is used.Comment: This expanded version has additional discussions that render the paper more readable without change of substance. It is to be published in Phys. Rev.

    Thermodynamics of (2+1)-flavor QCD: Confronting Models with Lattice Studies

    Full text link
    The Polyakov-quark-meson (PQM) model, which combines chiral as well as deconfinement aspects of strongly interacting matter is introduced for three light quark flavors. An analysis of the chiral and deconfinement phase transition of the model and its thermodynamics at finite temperatures is given. Three different forms of the effective Polyakov loop potential are considered. The findings of the (2+1)-flavor model investigations are confronted to corresponding recent QCD lattice simulations of the RBC-Bielefeld, HotQCD and Wuppertal-Budapest collaborations. The influence of the heavier quark masses, which are used in the lattice calculations, is taken into account. In the transition region the bulk thermodynamics of the PQM model agrees well with the lattice data.Comment: 13 pages, 7 figures, 3 tables; minor changes, final version to appear in Phys. Rev.

    Resolving the plasma profile via differential single inclusive suppression

    Get PDF
    The ability of experimental signatures to resolve the spatio-temporal profile of an expanding quark gluon plasma is studied. In particular, the single inclusive suppression of high momentum hadrons versus the centrality of a heavy-ion collision and with respect to the reaction plane in non-central collisions is critically examined. Calculations are performed in the higher twist formalism for the modification of the fragmentation functions. Radically different nuclear geometries are used. The influence of different initial gluon distributions as well as different temporal evolution scenarios on the single inclusive suppression of high momentum pions are outlined. It is demonstrated that the modification versus the reaction plane is quite sensitive to the initial spatial density. Such sensitivity remains even in the presence of a strong elliptic flow.Comment: 5 pages, 4 figures, RevTex
    • …
    corecore