9,233 research outputs found

    Phonon Properties of Knbo3 and Ktao3 from First-Principles Calculations

    Full text link
    The frequencies of transverse-optical Γ\Gamma phonons in KNbO3_3 and KTaO3_3 are calculated in the frozen-phonon scheme making use of the full-potential linearized muffin-tin orbital method. The calculated frequencies in the cubic phase of KNbO3_3 and in the tetragonal ferroelectric phase are in good agreement with experimental data. For KTaO3_3, the effect of lattice volume was found to be substantial on the frequency of the soft mode, but rather small on the relative displacement patterns of atoms in all three modes of the T1uT_{1u} symmetry. The TO frequencies in KTaO3_3 are found to be of the order of, but somehow higher than, the corresponding frequencies in cubic KNbO3_3.Comment: 8 pages + 1 LaTeX figure, Revtex 3.0, SISSA-CM-94-00

    Ergodicity breaking in strong and network-forming glassy system

    Full text link
    The temperature dependence of the non-ergodicity factor of vitreous GeO2_2, fq(T)f_{q}(T), as deduced from elastic and quasi-elastic neutron scattering experiments, is analyzed. The data are collected in a wide range of temperatures from the glassy phase, up to the glass transition temperature, and well above into the undercooled liquid state. Notwithstanding the investigated system is classified as prototype of strong glass, it is found that the temperature- and the qq-behavior of fq(T)f_{q}(T) follow some of the predictions of Mode Coupling Theory. The experimental data support the hypothesis of the existence of an ergodic to non-ergodic transition occurring also in network forming glassy systems

    Deep R-band counts of z~3 Lyman break galaxy candidates with the LBT

    Full text link
    Aims. We present a deep multiwavelength imaging survey (UGR) in 3 different fields, Q0933, Q1623, and COSMOS, for a total area of ~1500arcmin^2. The data were obtained with the Large Binocular Camera on the Large Binocular Telescope. Methods. To select our Lyman break galaxy (LBG) candidates, we adopted the well established and widely used color-selection criterion (U-G vs. G-R). One of the main advantages of our survey is that it has a wider dynamic color range for U-dropout selection than in previous studies. This allows us to fully exploit the depth of our R-band images, obtaining a robust sample with few interlopers. In addition, for 2 of our fields we have spectroscopic redshift information that is needed to better estimate the completeness of our sample and interloper fraction. Results. Our limiting magnitudes reach 27.0(AB) in the R band (5\sigma) and 28.6(AB) in the U band (1\sigma). This dataset was used to derive LBG candidates at z~3. We obtained a catalog with a total of 12264 sources down to the 50% completeness magnitude limit in the R band for each field. We find a surface density of ~3 LBG candidates arcmin^2 down to R=25.5, where completeness is >=95% for all 3 fields. This number is higher than the original studies, but consistent with more recent samples.Comment: in press by A&A, full LBG candidates' catalog will be available in electronic form at the CD

    Unveiling obscured accretion in the Chandra Deep Field South

    Full text link
    A large population of heavily obscured, Compton Thick AGNs is predicted by models of galaxy formation, models of Cosmic X-ray Background and by the ``relic'' super-massive black-hole mass function measured from local bulges. However, so far only a handful of Compton thick AGNs have been possibly detected using even the deepest Chandra and XMM surveys. Compton-thick AGNs can be recovered thanks to the reprocessing of the AGN UV emission in the infrared by selecting sources with AGN luminosity's in the mid-infrared and faint near-infrared and optical emission. To this purpose, we make use of deep HST, VLT, Spitzer and Chandra data on the Chandra Deep Field South to constrain the number of Compton thick AGN in this field. We show that sources with high 24μ\mum to optical flux ratios and red colors form a distinct source population, and that their infrared luminosity is dominated by AGN emission. Analysis of the X-ray properties of these extreme sources shows that most of them (80±15\pm15%) are indeed likely to be highly obscured, Compton thick AGNs. The number of infrared selected, Compton thick AGNs with 5.8μ\mum luminosity higher than 1044.210^{44.2} erg s−1^{-1} turns out to be similar to that of X-ray selected, unobscured and moderately obscured AGNs with 2-10 keV luminosity higher than 104310^{43} erg s−1^{-1} in the redshift bin 1.2-2.6. This ``factor of 2'' source population is exactly what it is needed to solve the discrepancies between model predictions and X-ray AGN selection.Comment: Revised version, to be published by The Astrophysical Journa

    Thermodynamic Scaling of the Viscosity of Van Der Waals, H-Bonded, and Ionic Liquids

    Full text link
    Viscosities and their temperature, T, and volume, V, dependences are reported for 7 molecular liquids and polymers. In combination with literature viscosity data for 5 other liquids, we show that the superpositioning of relaxation times for various glass-forming materials when expressed as a function of TV^g, where the exponent g is a material constant, can be extended to the viscosity. The latter is usually measured to higher temperatures than the corresponding relaxation times, demonstrating the validity of the thermodynamic scaling throughout the supercooled and higher T regimes. The value of g for a given liquid principally reflects the magnitude of the intermolecular forces (e.g., steepness of the repulsive potential); thus, we find decreasing g in going from van der Waals fluids to ionic liquids. For strongly H-bonded materials, such as low molecular weight polypropylene glycol and water, the superpositioning fails, due to the non-trivial change of chemical structure (degree of H-bonding) with thermodynamic conditions.Comment: 16 pages 7 figure

    Acoustic Nature of the Boson Peak in Vitreous Silica

    Full text link
    New temperature dependent inelastic x-ray (IXS) and Raman (RS) scattering data are compared to each other and with existing inelastic neutron scattering data in vitreous silica (v-SiO_2), in the 300 - 1775 K region. The IXS data show collective propagating excitations up to Q=3.5 nm^-1. The temperature behaviour of the excitations at Q=1.6 nm^-1 matches that of the boson peak found in INS and RS. This supports the acoustic origin of the excess of vibrational states giving rise to the boson peak in this glass.Comment: 10 pages and 4 figure

    Metallicity evolution, metallicity gradients and gas fractions at z~3.4

    Full text link
    We used near-infrared integral field spectroscopic observations from the AMAZE and LSD programs to constrain the metallicity in a sample of 40 star forming galaxies at 3<z<5 (most of which at z~3.4). We measure metallicities by exploiting strong emission line diagnostics. We found that a significant fraction of star-forming galaxies at z~3.4 deviate from the Fundamental Metallicity Relation (FMR), with a metallicity up to a factor of ten lower than expected according to the FMR. This deviation does not correlate with the dynamical properties of the galaxy or with the presence of interactions. To investigate the origin of the metallicity deviations in more detail, we also infer information on the gas content, by inverting the Schmidt-Kennicutt relation. In agreement with recent CO observational data, we found that, in contrast with the steeply rising trend at 0<z<2, the gas fraction in massive galaxies remains constant, with indication of a marginal decline, at 2<z<3.5. When combined with the metallicity information, we infer that to explain both the low metallicity and gas content in z~3.4 galaxies, both prominent outflows and massive pristine gas inflows are needed. In ten galaxies we can also spatially resolve the metallicity distribution. We found that the metallicity generally anticorrelates with the distribution of star formation and with the gas surface density. We discuss these findings in terms of pristine gas inflows towards the center, and outflows of metal rich gas from the center toward the external regions. (Abridged)Comment: Replaced to match the published versio

    Efficient CO2 electroreduction on tin modified cuprous oxide synthesized via a one-pot microwave-assisted route

    Get PDF
    Bimetallic copper-tin catalysts are considered cost-effective and suitable for large-scale electrochemical conversion of CO2 to valuable products. In this work, a class of tin (Sn) modified cuprous oxide (Cu2O) is simply synthesized through a one-pot microwave-assisted solvothermal method and thoroughly characterized by various techniques. Sn is uniformly distributed on the Cu2O crystals showing a cube-within-cube structure, and CuSn alloy phase emerges at high Sn contents. The atomic ratio of Cu to Sn is found to be crucially important for the selectivity of the CO2 reduction reaction, and a ratio of 11.6 leads to the optimal selectivity for CO. This electrode shows a high current density of 47.2 mA cm−2 for CO formation at −1.0 V vs. the reversible hydrogen electrode and also displays good CO selectivity of 80–90% in a wide potential range. In particular, considerable CO selectivity of 72–81% is achieved at relatively low overpotentials from 240 mV to 340 mV. During the long-term tests, satisfactory stability is observed for the optimal electrode in terms of both electrode activity and CO selectivity. The relatively low price, the fast and scalable synthesis, and the encouraging performance of the proposed material implies its good potential to be implemented in large-scale CO2 electrolyzers
    • …
    corecore