4 research outputs found

    An Approach to the Bio-Inspired Control of Self-reconfigurable Robots

    Get PDF
    Self-reconfigurable robots are robots built by modules which can move in relationship to each other. This ability of changing its physical form provides the robots a high level of adaptability and robustness. Given an initial configuration and a goal configuration of the robot, the problem of self-regulation consists on finding a sequence of module moves that will reconfigure the robot from the initial configuration to the goal configuration. In this paper, we use a bio-inspired method for studying this problem which combines a cluster-flow locomotion based on cellular automata together with a decentralized local representation of the spatial geometry based on membrane computing ideas. A promising 3D software simulation and a 2D hardware experiment are also presented.National Natural Science Foundation of China No. 6167313

    Distributed leader election and computation of local identifiers for programmable matter

    No full text
    International audienceThe context of this paper is programmable matter, which consists of a set of computational elements, called particles, in an infinite graph. The considered infinite graphs are the square, triangular and king grids. Each particle occupies one vertex, can communicate with the adjacent particles, has the same clockwise direction and knows the local positions of neighborhood particles. Under these assumptions, we describe a new leader election algorithm affecting a variable to the particles, called the k-local identifier, in such a way that particles at close distance have each a different k-local identifier. For all the presented algorithms, the particles only need a O(1)-memory space
    corecore