83,477 research outputs found

    Joint Dynamic Radio Resource Allocation and Mobility Load Balancing in 3GPP LTE Multi-Cell Network

    Get PDF
    Load imbalance, together with inefficient utilization of system resource, constitute major factors responsible for poor overall performance in Long Term Evolution (LTE) network. In this paper, a novel scheme of joint dynamic resource allocation and load balancing is proposed to achieve a balanced performance improvement in 3rd Generation Partnership Project (3GPP) LTE Self-Organizing Networks (SON). The new method which aims at maximizing network resource efficiency subject to inter-cell interference and intra-cell resource constraints is implemented in two steps. In the first step, an efficient resource allocation, including user scheduling and power assignment, is conducted in a distributed manner to serve as many users in the whole network as possible. In the second step, based on the resource allocation scheme, the optimization objective namely network resource efficiency can be calculated and load balancing is implemented by switching the user that can maximize the objective function. Lagrange Multipliers method and heuristic algorithm are used to resolve the formulated optimization problem. Simulation results show that our algorithm achieves better performance in terms of user throughput, fairness, load balancing index and unsatisfied user number compared with the traditional approach which takes resource allocation and load balancing into account, respectively

    A novel dual-stator hybrid excited synchronous wind generator

    Get PDF
    This paper presents a novel dual-stator hybrid excited synchronous wind generator and describes its structural features and operation principle. The no-load magnetic fields with different field currents are computed by 3-D finite-element method. Static characteristics, including the flux-linkage and EMF waveforms of stator windings, and inductance waveforms of armature windings and field winding, are analyzed. The simulation results show that due to the dual-stator structure, the air-gap magnetic flux can be easily controlled, while the output voltage can be increased effectively. Tests are performed on the prototype machine to validate the predicted results, and an excellent agreement is obtained

    Interdecadal variability of winter precipitation in Southeast China

    Get PDF
    Interdecadal variability of observed winter precipitation in Southeast China (1961–2010) is characterized by the first empirical orthogonal function of the three-monthly Standardized Precipitation Index (SPI) subjected to a 9-year running mean. For interdecadal time scales the dominating spatial modes represent monopole features involving the Arctic Oscillation (AO) and the sea surface temperature (SST) anomalies. Dynamic composite analysis (based on NCEP/NCAR reanalyzes) reveals the following results: (1) Interdecadal SPI-variations show a trend from a dryer state in the 1970s via an increase during the 1980s towards stabilization on wetter conditions commencing with the 1990s. (2) Increasing wetness in Southeast China is attributed to an abnormal anticyclone over south Japan, with northward transport of warm and humid air from the tropical Pacific to South China. (3) In mid-to-high latitudes the weakened southward flow of polar airmasses induces low-level warming over Eurasia due to stronger AO by warmer zonal temperature advection. This indicates that AO is attributed to the Southeast China precipitation increase influenced by circulation anomalies over the mid-to-high latitudes. (4) The abnormal moisture transport along the southwestern boundary of the abnormal anticyclone over south Japan is related to anomalous south-easterlies modulated by the SST anomalies over Western Pacific Ocean; a positive (negative) SST anomaly will strengthen (weaken) warm and humid air transport, leading to abundant (reduced) precipitation in Southeast China. That is both AO and SST anomalies determine the nonlinear trend observed in winter precipitation over Southeast China

    Coarse-Grained Picture for Controlling Complex Quantum Systems

    Full text link
    We propose a coarse-grained picture to control ``complex'' quantum dynamics, i.e., multi-level-multi-level transition with a random interaction. Assuming that optimally controlled dynamics can be described as a Rabi-like oscillation between an initial and final state, we derive an analytic optimal field as a solution to optimal control theory. For random matrix systems, we numerically confirm that the analytic optimal field steers an initial state to a target state which both contains many eigenstates.Comment: jpsj2.cls, 2 pages, 3 figure files; appear in J. Phys. Soc. Jpn. Vol.73, No.11 (Nov. 15, 2004

    Probing non-Abelian statistics of Majorana fermions in ultracold atomic superfluid

    Get PDF
    We propose an experiment to directly probe the non-Abelian statistics of Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms. We show different orders of braiding operations give orthogonal output states that can be distinguished through Raman spectroscopy. Realization of Majorana bound states in an s-wave superfluid requires strong spin-orbital coupling and a controllable Zeeman field in the perpendicular direction. We present a simple laser configuration to generate the artificial spin-orbital coupling and the required Zeeman field in the dark state subspace.Comment: 4 pages; Add detailed discussion of feasibility of the scheme;add ref

    Sim-real joint reinforcement transfer for 3D indoor navigation

    Full text link
    © 2019 IEEE. There has been an increasing interest in 3D indoor navigation, where a robot in an environment moves to a target according to an instruction. To deploy a robot for navigation in the physical world, lots of training data is required to learn an effective policy. It is quite labour intensive to obtain sufficient real environment data for training robots while synthetic data is much easier to construct by render-ing. Though it is promising to utilize the synthetic environments to facilitate navigation training in the real world, real environment are heterogeneous from synthetic environment in two aspects. First, the visual representation of the two environments have significant variances. Second, the houseplans of these two environments are quite different. There-fore two types of information,i.e. visual representation and policy behavior, need to be adapted in the reinforce mentmodel. The learning procedure of visual representation and that of policy behavior are presumably reciprocal. We pro-pose to jointly adapt visual representation and policy behavior to leverage the mutual impacts of environment and policy. Specifically, our method employs an adversarial feature adaptation model for visual representation transfer anda policy mimic strategy for policy behavior imitation. Experiment shows that our method outperforms the baseline by 19.47% without any additional human annotations

    Enhancement of vortex pinning in superconductor/ferromagnet bilayers via angled demagnetization

    Full text link
    We use local and global magnetometry measurements to study the influence of magnetic domain width w on the domain-induced vortex pinning in superconducting/ferromagnetic bilayers, built of a Nb film and a ferromagnetic Co/Pt multilayer with perpendicular magnetic anisotropy, with an insulating layer to eliminate proximity effect. The quasi-periodic domain patterns with different and systematically adjustable width w, as acquired by a special demagnetization procedure, exert tunable vortex pinning on a superconducting layer. The largest enhancement of vortex pinning, by a factor of more than 10, occurs when w ~ 310 nm is close to the magnetic penetration depth.Comment: 5 pages, 3 figures, accepted to Phys. Rev. B, Rapid Communication
    • …
    corecore