2,027 research outputs found

    Non-renormalization of two and three Point Correlators of N=4 SYM in N=1 Superspace

    Get PDF
    Certain two and three point functions of gauge invariant primary operators of N=4{\cal N}=4 SYM are computed in N=1{\cal N}=1 superspace keeping all the th\th-components. This allows one to read off many component descendent correlators. Our results show the only possible gYM2g^2_{YM} corrections to the free field correlators are contact terms. Therefore they vanish for operators at separate points, verifying the known non-renormalization theorems. This also implies the results are consistent with N=4{\cal N}=4 supersymmetry even though the Lagrangian we use has only N=1{\cal N}=1 manifest supersymmetry. We repeat some of the calculations using supersymmetric Landau gauge and obtain, as expected, the same results as those of supersymmetric Feynman gauge.Comment: 10 pages, 20 eps figures, references adde

    Fluctuations of the Josephson current and electron-electron interactions in superconducting weak links

    Full text link
    We derive a microscopic effective action for superconducting contacts with arbitrary transmission distribution of conducting channels. Provided fluctuations of the Josephson phase remain sufficiently small our formalism allows to fully describe fluctuation and interaction effects in such systems. As compared to the well studied tunneling limit our analysis yields a number of qualitatively new features which occur due to the presence of subgap Andreev bound states in the system. We investigate the equilibrium supercurrent noise and evaluate the electron-electron interaction correction to the Josephson current across superconducting contacts. At T=0 this correction is found to vanish for fully transparent contacts indicating the absence of Coulomb effects in this limit.Comment: 12 pages, 4 figure

    Transport Processes in Metal-Insulator Granular Layers

    Full text link
    Tunnel transport processes are considered in a square lattice of metallic nanogranules embedded into insulating host to model tunnel conduction in real metal/insulator granular layers. Based on a simple model with three possible charging states (±\pm, or 0) of a granule and three kinetic processes (creation or recombination of a ±\pm pair, and charge transfer) between neighbor granules, the mean-field kinetic theory is developed. It describes the interplay between charging energy and temperature and between the applied electric field and the Coulomb fields by the non-compensated charge density. The resulting charge and current distributions are found to be essentially different in the free area (FA), between the metallic contacts, or in the contact areas (CA), beneath those contacts. Thus, the steady state dc transport is only compatible with zero charge density and ohmic resistivity in FA, but charge accumulation and non-ohmic behavior are \emph{necessary} for conduction over CA. The approximate analytic solutions are obtained for characteristic regimes (low or high charge density) of such conduction. The comparison is done with the measurement data on tunnel transport in related experimental systems.Comment: 10 pages, 11 figures, 1 reference corrected, acknowlegments adde

    Density of states in d-wave superconductors of finite size

    Get PDF
    We consider the effect of the finite size in the ab-plane on the surface density of states (DoS) in clean d-wave superconductors. In the bulk, the DoS is gapless along the nodal directions, while the presence of a surface leads to formation of another type of the low-energy states, the midgap states with zero energy. We demonstrate that finiteness of the superconductor in one of dimensions provides the energy gap for all directions of quasiparticle motion except for \theta=45 degrees (\theta is the angle between the trajectory and the surface normal); then the angle-averaged DoS behaves linearly at small energies. This result is valid unless the crystal is 0- or 45-oriented (\alpha \ne 0 or 45 degrees, where \alpha is the angle between the a-axis and the surface normal). In the special case of \alpha=0, the spectrum is gapped for all trajectories \theta; the angle-averaged DoS is also gapped. In the special case of \alpha=45, the spectrum is gapless for all trajectories \theta; the angle-averaged DoS is then large at low energies. In all the cases, the angle-resolved DoS consists of energy bands that are formed similarly to the Kronig-Penney model. The analytical results are confirmed by a self-consistent numerical calculation.Comment: 9 pages (including 5 EPS figures), REVTeX

    Impurity band in clean superconducting weak links

    Full text link
    Weak impurity scattering produces a narrow band with a finite density of states near the phase difference ϕ=π\phi =\pi in the mid-gap energy spectrum of a macroscopic superconducting weak link. The equivalent distribution of transmission coefficients of various cunducting quantum channels is found.Comment: 4 pages, 4 figures, changed conten

    Direct Observation of Early-stage Quantum Dot Growth Mechanisms with High-temperature Ab Initio Molecular Dynamics

    Get PDF
    Colloidal quantum dots (QDs) exhibit highly desirable size- and shape-dependent properties for applications from electronic devices to imaging. Indium phosphide QDs have emerged as a primary candidate to replace the more toxic CdSe QDs, but production of InP QDs with the desired properties lags behind other QD materials due to a poor understanding of how to tune the growth process. Using high-temperature ab initio molecular dynamics (AIMD) simulations, we report the first direct observation of the early stage intermediates and subsequent formation of an InP cluster from separated indium and phosphorus precursors. In our simulations, indium agglomeration precedes formation of In-P bonds. We observe a predominantly intercomplex pathway in which In-P bonds form between one set of precursor copies while the carboxylate ligand of a second indium precursor in the agglomerated indium abstracts a ligand from the phosphorus precursor. This process produces an indium-rich cluster with structural properties comparable to those in bulk zinc-blende InP crystals. Minimum energy pathway characterization of the AIMD-sampled reaction events confirms these observations and identifies that In-carboxylate dissociation energetics solely determine the barrier along the In-P bond formation pathway, which is lower for intercomplex (13 kcal/mol) than intracomplex (21 kcal/mol) mechanisms. The phosphorus precursor chemistry, on the other hand, controls the thermodynamics of the reaction. Our observations of the differing roles of precursors in controlling QD formation strongly suggests that the challenges thus far encountered in InP QD synthesis optimization may be attributed to an overlooked need for a cooperative tuning strategy that simultaneously addresses the chemistry of both indium and phosphorus precursors.Comment: 40 pages, 9 figures, submitted for publicatio

    Coherent current states in mesoscopic four-terminal Josephson junction

    Full text link
    A theory is offered for the ballistic 4-terminal Josephson junction. The studied system consists of a mesoscopic two-dimensional normal rectangular layer which is attached in each side to the bulk superconducting banks (terminals). The relation between the currents through the different terminals, which is valid for arbitrary temperatures and junction sizes, is obtained. The nonlocal coupling of the supercurrents leads to a new effect, specific for the mesoscopic weak link between two superconducting rings; an applied magnetic flux through one of the rings produces a magnetic flux in the other ring even in the absence of an external flux through the other one. The phase dependent distributions of the local density of Andreev states, of the supercurrents and of the induced order parameter are obtained. The "interference pattern" for the anomalous average inside the two dimensional region can be regulated by the applied magnetic fluxes or the transport currents. For some values of the phase differences between the terminals, the current vortex state and the two dimensional phase slip center are appeared.Comment: 17 pages in Latex and 6 ps Figures. Will be published in Low Temp.Phy

    Full Counting Statistics of a charge shuttle

    Full text link
    We study the charge transfer in a small grain oscillating between two leads. Coulomb blockade restricts the charge fluctuations in such a way that only zero or one additional electrons can sit on the grain. The system thus acts as a charge shuttle. We obtain the full counting statistics of charge transfer and discuss its behavior. For large oscillation amplitude the probability of transferring n~\tilde n electrons per cycle is strongly peaked around one. The peak is asymmetric since its form is controlled by different parameters for n~>1\tilde n>1 and n~<1\tilde n < 1. Under certain conditions the systems behaves as if the effective charge is 1/2 of the elementary one. Knowledge of the counting statistics gives a new insight on the mechanism of charge transfer.Comment: 8 pages, 6 figures. Minor revisions. Phys. Rev. B (in press

    Spectrum of Andreev Bound States in a Molecule Embedded Inside a Microwave-Excited Superconducting Junction

    Get PDF
    Non-dissipative Josephson current through nanoscale superconducting constrictions is carried by spectroscopically sharp energy states, so-called Andreev bound states. Although theoretically predicted almost 40 years ago, no direct spectroscopic evidence of these Andreev bound states exists to date. We propose a novel type of spectroscopy based on embedding a superconducting constriction, formed by a single-level molecule junction, in a microwave QED cavity environment. In the electron-dressed cavity spectrum we find a polariton excitation at twice the Andreev bound state energy, and a superconducting-phase dependent ac Stark shift of the cavity frequency. Dispersive measurement of this frequency shift can be used for Andreev bound state spectroscopy.Comment: Published version; 4+ pages, 3 figure
    corecore