2,565 research outputs found

    Electron Excitation of High Dipole Moment Molecules Reexamined

    Full text link
    Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the "dense" gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H2_2 molecules, ≃\simeq105^5 for HCN, yields the requirements for electron excitation to be of practical importance if $n({\rm H}_2) \leq\ 10^{5.5} ~ \rm cm^{-3}and and X({\rm e}^-) \geq\ 10^{-5},wherethenumericalfactorsreflectcriticalvalues, where the numerical factors reflect critical values n_{\rm{}c}({\rm H_2})and and X^*({\rm{}e}^-).Thisindicatesthatinregionswherealargefractionofcarbonisionized,. This indicates that in regions where a large fraction of carbon is ionized, X({\rm e}^-)willbelargeenoughtomakeelectronexcitationsignificant.Thesituationisingeneralsimilarforother"highdensitytracers",includingHCO will be large enough to make electron excitation significant. The situation is in general similar for other "high density tracers", including HCO^+,CN,andCS.Buttherearesignificantdifferencesinthecriticalelectronfractionalabundance,, CN, and CS. But there are significant differences in the critical electron fractional abundance, X^*({\rm e}^-),definedbythevaluerequiredforequaleffectfromcollisionswithH, defined by the value required for equal effect from collisions with H_2ande and e^-.Electronexcitationis,forexample,unimportantforCOandC. Electron excitation is, for example, unimportant for CO and C^+.Electronexcitationmayberesponsibleforthesurprisinglylargespatialextentoftheemissionfromdensegastracersinsomemolecularclouds(Petyetal.2017;Kauffmann,Goldsmithetal.2017).TheenhancedestimatesforHCNabundancesandHCN/COandHCN/HCO. Electron excitation may be responsible for the surprisingly large spatial extent of the emission from dense gas tracers in some molecular clouds (Pety et al. 2017; Kauffmann, Goldsmith et al. 2017). The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO^+$ ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non-static.Comment: published in Ap

    Low Virial Parameters in Molecular Clouds: Implications for High Mass Star Formation and Magnetic Fields

    Get PDF
    Whether or not molecular clouds and embedded cloud fragments are stable against collapse is of utmost importance for the study of the star formation process. Only "supercritical" cloud fragments are able to collapse and form stars. The virial parameter, alpha=M_vir/M, which compares the virial to the actual mass, provides one way to gauge stability against collapse. Supercritical cloud fragments are characterized by alpha<2, as indicated by a comprehensive stability analysis considering perturbations in pressure and density gradients. Past research has suggested that virial parameters alpha>2 prevail in clouds. This would suggest that collapse towards star formation is a gradual and relatively slow process, and that magnetic fields are not needed to explain the observed cloud structure. Here, we review a range of very recent observational studies that derive virial parameters <<2 and compile a catalogue of 1325 virial parameter estimates. Low values of alpha are in particular observed for regions of high mass star formation (HMSF). These observations may argue for a more rapid and violent evolution during collapse. This would enable "competitive accretion" in HMSF, constrain some models of "monolithic collapse", and might explain the absence of high--mass starless cores. Alternatively, the data could point at the presence of significant magnetic fields ~1 mG at high gas densities. We examine to what extent the derived observational properties might be biased by observational or theoretical uncertainties. For a wide range of reasonable parameters, our conclusions appear to be robust with respect to such biases.Comment: accepted to Ap

    Enhancement of Vibronic and Ground-State Vibrational Coherences in 2D Spectra of Photosynthetic Complexes

    Get PDF
    A vibronic-exciton model is applied to investigate the mechanism of enhancement of coherent oscillations due to mixing of electronic and nuclear degrees of freedom recently proposed as the origin of the long-lived oscillations in 2D spectra of the FMO complex [Christensson et al. J. Phys. Chem. B 116 (2012) 7449]. We reduce the problem to a model BChl dimer to elucidate the role of resonance coupling, site energies, nuclear mode and energy disorder in the enhancement of vibronic-exciton and ground-state vibrational coherences, and to identify regimes where this enhancement is significant. For a heterodimer representing the two coupled BChls 3 and 4 of the FMO complex, the initial amplitude of the vibronic-exciton and vibrational coherences are enhanced by up to 15 and 5 times, respectively, compared to the vibrational coherences in the isolated monomer. This maximum initial amplitude enhancement occurs when there is a resonance between the electronic energy gap and the frequency of the vibrational mode. The bandwidth of this enhancement is about 100 cm-1 for both mechanisms. The excitonic mixing of electronic and vibrational DOF leads to additional dephasing relative to the vibrational coherences. We evaluate the dephasing dynamics by solving the quantum master equation in Markovian approximation and observe a strong dependence of the life-time enhancement on the mode frequency. Long-lived vibronic-exciton coherences are found to be generated only when the frequency of the mode is in the vicinity of the electronic resonance. Although the vibronic-exciton coherences exhibit a larger initial amplitude compared to the ground-state vibrational coherences, we conclude that both type have a similar magnitude at long time for the present model. The ability to distinguish between vibronic-exciton and ground-state vibrational coherences in the general case of molecular aggregate is discussed.Comment: 16 pages, 6 figure

    The Ages of Elliptical Galaxies in a Merger Model

    Full text link
    The tightness of the observed colour-magnitude and Mg2_{2}- velocity dispersion relations for elliptical galaxies has often been cited as an argument against a picture in which ellipticals form by the merging of spiral disks. A common view is that merging would mix together stars of disparate ages and produce a large scatter in these relations. Here I use semi-analytic models of galaxy formation to derive the distribution of the mean ages, colours and metallicities of the stars in elliptical galaxies formed by mergers in a flat CDM universe. It is seen that most of the stars in ellipticals form at relatively high redshift (z > 1.9) and that the predicted scatter in the colour-magnitude and Mg_2 - sigma relations falls within observational bounds. I conclude that the apparent homogeneity in the properties of the stellar populations of ellipticals is not inconsistent with a merger scenario for the origin of these systems.Comment: latex file, figures available upon reques

    Does the Number Density of Elliptical Galaxies Change at z<1?

    Full text link
    We have performed a detailed V/Vmax test for a sample of the Canada-France Redshift Survey (CFRS) for the purpose of examining whether the comoving number density of field galaxies changes significantly at redshifts of z<1. Taking into account the luminosity evolution of galaxies which depends on their morphological type through different history of star formation, we obtain \sim 0.5 in the range of 0.3<z<0.8, where reliable redshifts were secured by spectroscopy of either absorption or emission lines for the CFRS sample. This indicates that a picture of mild evolution of field galaxies without significant mergers is consistent with the CFRS data. Early-type galaxies, selected by their (V-I)_{AB} color, become unnaturally deficient in number at z>0.8 due to the selection bias, thereby causing a fictitious decrease of . We therefore conclude that a reasonable choice of upper bound of redshift z \sim 0.8 in the V/Vmax test saves the picture of passive evolution for field ellipticals in the CFRS sample, which was rejected by Kauffman, Charlot, & White (1996) without confining the redshift range. However, about 10% of the CFRS sample consists of galaxies having colors much bluer than predicted for irregular galaxies, and their \avmax is significantly larger than 0.5. We discuss this population of extremely blue galaxies in terms of starburst that has just turned on at their observed redshifts.Comment: 11 pages including 3 figures, to appear in ApJ Letter

    The Properties of Satellite Galaxies in External Systems. I. Morphology and Structural Parameters

    Get PDF
    We present the first results of an ongoing project to study the morphological, kinematical, dynamical, and chemical properties of satellite galaxies of external giant spiral galaxies. The sample of objects has been selected from the catalogue by Zaritsky et al. (1997). The paper analyzes the morphology and structural parameters of a subsample of 60 such objects. The satellites span a great variety of morphologies and surface brightness profiles. About two thirds of the sample are spirals and irregulars, the remaining third being early-types. Some cases showing interaction between pairs of satellites are presented and briefly discussed.Comment: Accepted for publication in Astrophys. Journal Supp. Se

    Spectral and morphological properties of quasar hosts in SPH simulations of AGN feeding by mergers

    Full text link
    We present a method for generating virtual observations from smoothed-particle-hydrodynamics (SPH) simulations. This method includes stellar population synthesis models and the reprocessing of starlight by dust to produce realistic galaxy images. We apply this method and simulate the merging of two identical giant Sa galaxies. The merger remnant is an elliptical galaxy. The merger concentrates the gas content of the two galaxies into the nuclear region. The gas that flows into the nuclear region refuels the central black holes of the merging galaxies. We follow the refuelling of the black holes during the merger semi-analytically. In the simulation presented in this article, the black holes grow from 3 x 10^7 to 1.8X 10^8 Solar masses, with a peak AGN luminosity of M_B ~ -23.7. We study how the morphological and spectral properties of the system evolve during the merger and work out the predictions of this scenario for the properties of host galaxies during the active phase. The peak of AGN activity coincides with the merging of the two galactic nuclei and occurs at a stage when the remnant looks like a lenticular galaxy. The simulation predicts the formation of a circumnuclear starburst ring/dusty torus with an opening angle of 30-40 degrees and made of clouds with n_H=10^24 cm^-2. The average optical depth of the torus is quite high, but the obscuring medium is patchy, so that there still exist lines of sight where the AGN is visible in a nearly edge-on view. For the same reason, there are lines of sight where the AGN is completely obscured in the face-on view.Comment: 14 pages, 11 figure
    • 

    corecore