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ABSTRACT

Whether or not molecular clouds and embedded cloud fragments are stable against collapse is of utmost importance
for the study of the star formation process. Only “supercritical” cloud fragments are able to collapse and form
stars. The virial parameter α = Mvir/M , which compares the virial mass to the actual mass, provides one way
to gauge stability against collapse. Supercritical cloud fragments are characterized by α � 2, as indicated by a
comprehensive stability analysis considering perturbations in pressure and density gradients. Past research has
suggested that virial parameters α � 2 prevail in clouds. This would suggest that collapse toward star formation is a
gradual and relatively slow process and that magnetic fields are not needed to explain the observed cloud structure.
Here, we review a range of very recent observational studies that derive virial parameters �2 and compile a
catalog of 1325 virial parameter estimates. Low values of α are in particular observed for regions of high-mass
star formation (HMSF). These observations may argue for a more rapid and violent evolution during collapse.
This would enable “competitive accretion” in HMSF, constrain some models of “monolithic collapse,” and might
explain the absence of high-mass starless cores. Alternatively, the data could point at the presence of significant
magnetic fields ∼1 mG at high gas densities. We examine to what extent the derived observational properties might
be biased by observational or theoretical uncertainties. For a wide range of reasonable parameters, our conclusions
appear to be robust with respect to such biases.
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1. INTRODUCTION

Whether or not clouds and embedded cloud fragments4 are
stable against collapse is of utmost importance for the study of
molecular clouds and the star formation process. “Subcritical”
cloud fragments are unbound and may expand and dissolve back
into the diffuse interstellar medium. Conversely, “supercritical”
fragments are bound or marginally gravitationally bound and
can undergo collapse when perturbed. Such cloud fragments can
eventually form stars. The virial parameter, α ≡ 5σ 2

v R/(GM)
(Bertoldi & McKee 1992; hereafter BM) can be used to gauge
whether a cloud fragment is subcritical or supercritical. It is
calculated from a fragment’s mass, radius, and one-dimensional
velocity dispersion (M, R, and σv; G is the constant of gravity).
For given environmental conditions, there is a critical virial
parameter such that subcritical clouds are characterized by
α > αcr, while α < αcr holds for supercritical clouds. For non-
magnetized clouds, αcr � 2, while strong magnetic fields imply
αcr � 2 (see Section 2 and Appendix A for both statements).

Larson (1981) presented some of the earliest observational
work on α that used a large sample containing several clouds.
In his Figure 4, he examines the ratio σ 2

v R/(GM) = α/5.
He derives the mean and the dispersion around the average
value, which give a range 1.1+1.6

−0.6. This implies α = 5+8
−3 in

our framework. Since that study, virial parameters α � 2 are
regularly considered to be a general feature of molecular cloud
structure on any spatial scale. For example, Heyer et al. (2009)
find a mean value α = 1.9 for their cloud sample. In fact, the

3 Both authors contributed equally to this work.
4 We use the word “fragment” to denote substructure in clouds, as explained
in Section 2. Our analysis is not concerned with the fragmentation processes
that might create such substructure.

apparent observation that clouds and cloud fragments are critical
or subcritical is commonly known as “Larson’s second law” of
cloud structure5 (e.g., McKee & Ostriker 2007).

The supposed prevalence of virial parameters α � 2 has a
range of consequences for star formation physics. First, since
cloud fragments do not seem to reside in the highly unstable
domain α � 2, contraction toward collapse is supposedly
gradual and does not occur with free-fall velocities. Second, if
high-mass cores can be modeled as non-magnetized hydrostatic
spheres supported by “turbulent” gas motions with velocity
dispersion σv , then stellar accretion rates Ṁ� ∝ σ 3

v during
collapse are implied (e.g., Shu 1977). Given the large observed
values of σv , this would offer a straightforward explanation
why high-mass stars can continue to accrete despite exerting
significant radiation pressure on their environment (McKee &
Tan 2002). Third, dynamically significant magnetic fields would
not be needed to explain the structure of molecular clouds.
If α � 2, gas motions alone could prevent cloud fragments
from collapsing, while α < 2 would imply a significant role
for magnetic fields in star formation (e.g., Myers & Goodman
1988). Fourth, star formation via “competitive accretion” would
not work, since this requires high densities and slow relative
motions between stars and gas (implying α < 1; Krumholz
et al. 2005).

We remark that the virial parameter is also important when
one wishes to understand the evolution of entire molecular
clouds. Virial parameters in large cloud complexes were studied
by, e.g., Solomon et al. (1987), Scoville et al. (1987), and Heyer
et al. (2001). Recent updates are provided by Heyer et al.

5 We stress that Larson (1981) intends to understand order-of-magnitude
effects of cloud structure. Within the factor ∼10 range considered by him, his
and our results are consistent.
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(2009) and Roman-Duval et al. (2010). Dobbs et al. (2011)
suggest that clouds in their entirety are unbound on large spatial
scales � 10 pc. This would present a convenient explanation
for the low star formation rate in the Milky Way. Theoretical
and numerical models show a strong dependence of the star
formation rate on the virial parameter (Federrath & Klessen
2012 and references therein), emphasizing the importance of
determining the virial parameter observationally.

For these reasons, it is important to realize that a number
of observational studies conducted in the last few years do
find massive cloud fragments with α � 2 (e.g., Pillai et al.
2011, 2012; Csengeri et al. 2011; Wienen et al. 2012; Li et al.
2013). These observations also mean that constraints on star
formation physics based on the assumption of α � 2 have to
be reconsidered. Returning to the list above, collapse might
be rapid and violent. There is little evidence to justify spheres
in hydrostatic equilibrium supported by turbulent pressure, for
which Ṁ� ∝ σ 3

v would hold. Competitive accretion may occur
and significant magnetic fields might be needed to explain cloud
structure.

More generally, the new observations constrain under which
conditions numerical cloud simulations with initial virial pa-
rameters α > 1 (e.g., the series of simulations started by Bate
et al. 2002) or α < 1 (e.g., Hennebelle et al. 2011) may ap-
ply and why some stellar clusters might be born with velocity
dispersions too low to balance self-gravity (see Adams 2010
for a summary). The compilation presented here also gauges to
what extent virial masses can be used to estimate true fragment
masses.

However, before discussing the implications of small virial
parameters, it is prudent to re-examine observational determina-
tions of α. Here, we do so by presenting a large catalog of virial
parameter estimates generated by reprocessing a wide variety
of previously published observations in a standardized fashion.
This helps to separate true observational trends from artifacts
found in smaller samples. Also, past studies calculated virial
parameters using a very broad range of definitions for α. This
means that virial parameters reported by different studies can
usually not be directly compared with one another.

Furthermore, it is important to be aware of the model assump-
tions determining the value of αcr, which controls whether an
observed cloud fragment is stable or not. Ballesteros-Paredes
(2006) explores some of the most common misconceptions
about the virial parameter. In particular, he stresses that there
is constant mass flow between all scales, so that a static pic-
ture of cloud structure may not be appropriate. That said, he
concludes that “the sub- or supercriticality of a molecular cloud
core (judged based on the virial mass ratio) is a good estimation
of the dynamical state of such a core,” in accordance with the
assumptions made in the current paper.

We address these points as follows. First, Section 2 sum-
marizes the concept of the virial parameter and reviews the
expected critical values controlling the stability of cloud frag-
ments against collapse. Section 3 presents the reprocessing of
existing observational data to derive a catalog of virial param-
eter estimates. Trends found within this catalog are described
and discussed in Section 4. In particular, this shows that α � 2
is found in a variety of samples. Section 5 describes possible
implications for star formation physics. Whether observational
uncertainties could bias the virial parameter to values � 2 is
examined in Section 6. The paper concludes with a summary
in Section 7. In three appendices, we examine the virial pa-
rameter (Appendix A), its dependency on the fragment masses

(Appendix B), and implications from low observed virial pa-
rameters (Appendix C), in more detail.

Sections 3 and 4 are of a somewhat technical nature. These
parts of the discussion may be skipped if one wishes to proceed
directly to the essential parts of the paper.

2. THE VIRIAL PARAMETER: AN OVERVIEW

For more than two decades, the virial parameter and the
related virial mass have been employed to gauge whether or not
a cloud fragment is stable against collapse. Here, we define a
few relevant properties and summarize how the virial parameter
can be used to gauge whether a cloud fragment is unstable
to gravitational collapse or not. Some of the details of the
discussion are deferred to Appendix A.

Throughout this paper, we consider “cloud fragments” as
entities of arbitrary size that form part of larger molecular
clouds. Fragments include, for example, the “dense cores” and
“clumps” discussed in other studies (e.g., Williams et al. 2000).

We execute our analysis in the framework laid out by BM.
They define the virial parameter as

α ≡ 5σ 2
v R

GM
(1a)

= 1.2
( σv

km s−1

)2
(

R

pc

) (
M

103 M�

)−1

. (1b)

One may simplify this and write α = Mvir/M by defining a virial
mass Mvir ≡ 5σ 2

v R/G. As detailed in Section 3, the velocity
dispersion combines the thermal motion of the mean free particle
in interstellar molecular gas with the non-thermal motions of the
bulk gas. This definition of α was chosen since—as shown by
BM—

α = a
2Ekin

|Epot| , (2)

where Ekin and Epot are the kinetic and gravitational potential
energy, respectively. The parameter a absorbs modifications that
apply in the case of non-homogeneous and non-spherical density
distributions. Evaluation gives a = 2 ± 1 for a wide range of
cloud shapes and density gradients (see Appendix A).

The fact that α is related to Ekin/|Epot| can be used for a naive
stability analysis that neglects a few details. Cloud fragments
with Ekin/|Epot| � 1, and therefore α � 1, contain enough
kinetic energy to expand and dissolve into the surrounding
environment. Alternatively, they may also be confined by
additional forces, such as an external pressure (see, e.g., the
“pressure confined” fragments discussed by BM). Conversely,
fragments with Ekin/|Epot| � 1, and therefore α � 1, do not
hold significant kinetic energy and will often not be stable: they
will collapse or must be supported against self-gravity. This
suggests the existence of a critical virial parameter αcr ∼ 1.
“Supercritical” fragments with α < αcr will collapse, while
“subcritical” fragments with α > αcr will expand or must be
confined.

More detailed models of the stability of cloud fragments usu-
ally consider a model’s response to perturbations. For exam-
ple, isothermal hydrostatic equilibrium spheres, as discussed
by Ebert (1955) and Bonnor (1956), are stable against slow
perturbations provided their mass is below the critical value,
M < MBE, where

MBE = 2.43
σ 2

v R

G
. (3)
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Substitution of this mass into Equation (1) gives αBE = 2.06, the
critical virial parameter of Bonnor–Ebert spheres. As laid out
in Appendix A, MBE actually provides an approximate upper
limit to the critical masses of non-magnetized spheres, provided
that the pressure comes from random motions with a velocity
dispersion increasing outward (as observed; see Section 4):
MB=0 � MBE. It follows that

αB=0 � αBE ≈ 2 (4)

holds for the critical virial parameter of a hydrostatic equilibrium
sphere not supported by magnetic pressure. For reference, the
velocity dispersion needed to achieve α = 2 is presented in
Section 5.

For magnetized clouds, a critical mass MB ≈ MB=0 + MΦ
holds (BM), where the magnetic flux mass for a field of mean
strength 〈B〉 is

MΦ = 0.12
Φ

G1/2
= 0.12

π〈B〉R2

G1/2
(5)

(Tomisaka et al. 1988). MB=0 � MBE implies that MB �
MBE + MΦ. One may further rewrite Equation (1a), without loss
of generality, as α = αBE · (MBE/M). In the critical case, with
M = MB , substitution of MB � MBE + MΦ and rearrangement
gives

αB � 2 · 1

1 + MΦ/MBE
, (6)

where we have further used that αBE ≈ 2. In the limit
MΦ � MBE, one finds αB = αBE · (MBE/MΦ). This shows
that αB can attain values � 2, provided that the magnetic field
is strong enough.

The discussion above assumes roughly spherical models with
moderate density gradients. In principle, deviations from a
spherical shape and variations in density gradients will affect
a model’s stability against perturbations. However, since a
is approximately constant over a wide range of parameters
(Appendix A), moderate deviations from the assumed density
profiles should not significantly affect the energy ratios and
therefore should also not affect the stability considerations.

We note that the impact of inhomogeneous density distribu-
tions does not have to be considered when comparing observed
virial parameters against specific model values, such as αBE.
Detailed model calculations, e.g., of the Bonnor–Ebert case,
already take density gradients into account. Correction of the
observed α or of the model value αcr would thus be overcorrect-
ing for density gradients.

3. SAMPLE SELECTION AND DATA ANALYSIS

This section explains how α is calculated from the data. The
results are shown in Figure 1. We compile a catalog containing
a total of 1325 virial parameter estimates for entire molecular
clouds (�1 pc scale), clumps (∼1 pc), and cores (�1 pc) with
and without high-mass star formation (HMSF).

As we detail below, observations of entire clouds are taken
from Heyer et al. (2009) and Roman-Duval et al. (2010). Data
for HMSF regions are from Sridharan et al. (2005), Pillai
et al. (2011), Wienen et al. (2012), Li et al. (2013), and
Tan et al. (2013). These samples all focus on, or exclusively
study, early stages of HMSF. This means sources of significant
luminosity are clearly not embedded in the fragments. We
choose to concentrate on such young sources, because the state
of more evolved objects is not necessarily representative of

α = 2

factor 5

Figure 1. Virial parameter, α, as a function of fragment mass. Filled symbols
indicate samples focusing on regions of HMSF, while crosses indicate studies
dealing with non-HMSF regions. Open circles are used for mixed samples that
include clouds with and without HMSF. The horizontal black line at α = 2
gives the lowest critical virial parameter expected for non-magnetized clouds:
fragments with α < 2 are supercritical and unstable to collapse, unless they
are supported by significant magnetic fields. For reference, a virial parameter
lower by a factor of 5 is indicated using an arrow and another horizontal line.
To illustrate power law trends in virial parameters, fits to the Lada et al. (2008)
and Wienen et al. (2012) samples are drawn using black lines.

(A color version of this figure is available in the online journal.)

the initial conditions for star formation. For this reason, we
do not include data from HMSF samples where—as discussed
by the respective authors—evolutionary indicators like masers,
mid-infrared emission, outflows, infall line profiles, etc., imply
active star formation (Plume et al. 1997; Molinari et al. 2000;
Beuther et al. 2002; Beltran et al. 2004; Fontani et al. 2005;
Bontemps et al. 2010; Csengeri et al. 2011). Data for non-HMSF
cores include cores in the Pipe Nebula (Lada et al. 2008) and
Perseus molecular cloud (Enoch et al. 2006). Notes on individual
samples are given in Section 3.2. Table 1 presents an overview
of the different studies used here.

Our combined sample is not meant to be complete and unbi-
ased; while our guiding principle is to provide a comprehensive
overview, when possible we focus on larger samples that can
easily be processed in the standardized way outlined below. A
key aspect is that we only employ masses derived from obser-
vations of dust emission and extinction, and use a common set
of dust opacities to derive masses from these data. This ap-
proach is chosen since mass measurements based on molecular
line emission suffer from uncertainties due to unknown molec-
ular abundances and excitation conditions. We deviate from this
strategy only when considering very large clouds, for which only
observations of molecular line emission from CO are available.
Definitions of radius and velocity dispersion are standardized
for all data, as explained below.

3.1. Data Processing

Several properties must be calculated to estimate the virial
parameter. This is done as follows.

Velocity Dispersion, σv . Some studies provide the FWHM line
width (Roman-Duval et al. 2010; Wienen et al. 2012; Bontemps
et al. 2010; Pillai et al. 2011; and Sridharan et al. 2005). In those
cases, we calculate the corresponding velocity dispersion for a
Gaussian line shape. We have discarded data where more than
one velocity component is reported. This avoids the arbitrary

3



The Astrophysical Journal, 779:185 (14pp), 2013 December 20 Kauffmann, Pillai, & Goldsmith

Table 1
Data Summary

Sample 〈R〉 Sample Mediana 〈ΣM 〉 Star Formation Modeb σv from Total Mass from
pc g cm−2

Enoch et al. 0.02 0.04 Non-HMSF NH3 (1,1) 1100 μm
Heyer et al. 3.91 0.04 Undetermined 13CO (1–0) 13CO (1–0)
Lada et al. 0.12 0.01 Non-HMSF NH3 (1,1) Near-infrared extinction
Li et al. 0.04 0.18 HMSF NH3 (1,1) 850 μm
Pillai et al. 0.29 0.12 HMSF NH2D (111–101) 3500 μm
Roman-Duval et al. 8.33 0.03 Undetermined 13CO (1–0) 13CO (1–0)
Sridharan et al. 0.22 0.10 HMSF NH3 (1,1) 1200 μm
Tan et al. 0.06 0.13 HMSF N2D+ (3–2) 1338 μm
Wienen et al. 0.68 0.15 HMSF NH3 (1,1) 870 μm

Notes.
a The median value of 〈ΣM 〉 determined for a given sample.
b Mode of star formation (i.e., high-mass stars are present or not or should form in the future), as judged by the original authors; for
“undetermined” samples, the star formation modes of the clouds have not been assessed, but are likely mixed.

choice of how the mass has to be divided up between the different
velocity components.

The velocity dispersion σv entering the calculation of the
virial parameter reflects the combination of non-thermal gas
motions, σv,nt, and the thermal motions of the particle of mean
mass. The latter mass is 〈m〉 = 2.33 mH for molecular gas
at the typical interstellar abundance of H, He, and metals
(Appendix A of Kauffmann et al. 2008). For a molecule of
mass m, the thermal velocity dispersion at temperature T is
σth,m = 288 m s−1 · (m/mH)−1/2 · (T/10 K)1/2, where mH is
the hydrogen mass. We combine these relations to estimate the
dynamically relevant velocity dispersion as σ 2

v = σ 2
th,〈m〉 + σ 2

v,nt.
Similarly, the velocity dispersion observed for a molecule of
mass m is a combination of thermal and non-thermal gas
motions, σ 2

v,obs = σ 2
th,m + σ 2

v,nt. We use the latter relation to
estimate σv,nt, which is then used to derive σv .

We have consistently used molecular emission lines selec-
tively tracing dense gas to estimate velocity dispersions. This
assures that the mass derived from dust emission and the ve-
locity dispersion from emission lines probe the same volume.
The dense gas tracers include NH3, NH2D, N2H+, and N2D+

and are not affected by depletion. Figure 2 illustrates the strong
correlation between these tracers and the dust emission relevant
for mass measurements. Tracers of lower density gas are only
used for the two 13CO-based cloud samples for which dust con-
tinuum data are not available (Heyer et al. 2009; Roman-Duval
et al. 2010). In those cases, we have used 13CO-derived masses
and we have correspondingly derived α using 13CO velocity
dispersions.

Radius, R. We adopt a common definition for the radius
across all samples. Specifically, we determine the source area,
A, and convert this into an effective radius, R = (A/π )1/2. Some
samples report an area contained in a specific contour or they
use other means to draw a clear outer source boundary. Other
publications report the FWHM and we use the FWHM area to
determine R. As described below, we assure that mass and radius
are consistent and refer to the same area.

Mass from Dust Emission, M. Most masses are estimated from
dust emission. These masses are calculated from the observed
flux following the formalism from Kauffmann et al. (2008):

M = 0.12 M�
(
e1.439(λ/mm)−1(T/10 K)−1 − 1

)

×
(

κν

0.01 cm2 g−1

)−1 (
Fν

Jy

) (
d

100 pc

)2 (
λ

mm

)3

, (7)

Figure 2. Comparison of emission from dust (left panel; SCUBA data from
Nutter & Ward-Thompson 2007) and ammonia (middle; combined VLA and
GBT data from Li et al. 2013). The correlation between the tracers is obvious.
This justifies the use of tracers like ammonia to characterize the kinematics of
material detected in dust emission.

(A color version of this figure is available in the online journal.)

where κν is the dust opacity and Fν is the integrated flux for
an object at distance d and dust temperature T. We adopt a
common opacity law κν for dust grains with thin ice mantles
coagulating for 105 yr at density of 106 cm−3 from Ossenkopf &
Henning (1994). We adopt a gas-to-dust ratio of 100. We have
used a power-law slope of 1.75 (Battersby et al. 2011) when
interpolating and extrapolating (for wavelengths λ > 1.3 mm)
between tabulated values.

As discussed before, we assure that mass and radius are
consistent and refer to the same area. Most publications report
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the flux for the aforementioned area A used to derive the effective
radius. A different approach is taken by Wienen et al. (2012)
and Sridharan et al. (2005): these authors report FWHM sizes
(Sridharan et al. take those data from Beuther et al. 2002), while
the reported fluxes are integrated over a full Gaussian model
fitted to the sources. The latter model exceeds the spatial extent
of the FWHM area. To derive mass and size estimates for the
same area, the mass—and the observed flux—is reduced by a
factor of 0.69 (see Kauffmann & Pillai 2010).

Mass from Dust Extinction, M. Core masses in the Pipe
Nebula are based on extinction data of Alves et al. (2007). These
authors use the NICER method on the data from 2MASS bands
(1.25 μm, 1.65 μm, and 2.2 μm). Core masses are obtained
using an extinction law AK/AV = 0.112 and a conversion
factor from extinction to column density of N (H2)/AV = 9.4×
1020 cm−2 mag−1. As shown in Kauffmann et al. (2010a), based
on work by Bianchi et al. (2003), such extinction-based masses
are within a factor of ∼1.5 consistent with masses derived from
dust emission using the aforementioned formalism.

Mass from 13CO Emission, M. The 13CO-based masses are
taken directly from the original publications. These latter mass
measurements are not standardized with respect to the dust
observations and they suffer from other and larger uncertainties
(e.g., abundance). Also, the interpretation of virial parameters
depends on how exactly the observed 13CO luminosity traces a
cloud’s mass reservoir (e.g., Maloney 1990). Here, 13CO-based
masses are shown for completeness; they are not used in our
main analysis.

Virial Parameter, α. From the properties derived above, the
virial parameter α is eventually calculated in the same way for
all cloud fragments using Equation (1).

Observational Uncertainties. The aforementioned observa-
tional properties suffer from a variety of observational uncer-
tainties. Because of the flow of the argument, it is most useful to
discuss these uncertainties in the context of the physical inter-
pretation of the results. This is done at the end of this paper in
Section 6. We briefly note that the expected mass uncertainties
are of the order of a factor of two and are the largest uncertainty
in calculating α. The resulting virial parameters are uncertain
by a similar factor.

3.2. Individual Samples

Giant Molecular Clouds. We have used data from the 13CO-
based survey of giant molecular clouds (GMCs) by Roman-
Duval et al. (2010). They derive masses, sizes, and kinematics
for 750 molecular clouds based on the Boston University-Five
College Radio Astronomy Observatory Galactic Ring Survey
(GRS). These data overlap with the GRS data published for
162 GMCs of Heyer et al. (2009). We also plot the latter
sample for consistency.6 Note that these data are the only ones
for which we have used gas masses estimated from molecular
line emission. They are estimated from 13CO data assuming an
excitation temperature from the 12CO line emission and a CO-to-
H2 abundance ratio of 8×10−5. The studies furthermore assume
that the 12CO-to-13CO abundance varies with galactocentric
radius as described by Frerking et al. (1982) and Milam et al.
(2005), depending on the study. We stress that the 13CO-based

6 The properties derived for the same molecular clouds in both studies (as
noted by Roman-Duval et al.) show differences because of the different
methods of structure identification and choice of noise threshold.
Roman-Duval et al. compute an effective radius within the contour detected at
the 4σ level, while Heyer et al. use the position centroid and angular extent
defined by a box around the 13CO cloud.

data are shown for completeness, but that they suffer from other
biases than the dust-based observations that are the focus of this
study. To calculate the thermal velocity dispersion, a common
gas temperature of 10 K is assumed for all clouds in these
samples.

HMSF Clumps. We have compiled published data from
Wienen et al. (2012), who present a comprehensive catalog
of cold (hence likely prestellar) high-mass clumps identified
from an unbiased continuum survey of the inner Galactic plane
at 870 μm. Masses are determined from the latter data. We
use their NH3 (1,1) Effelsberg 100 m telescope data to obtain
velocity dispersions and estimate dust temperatures for mass
measurements. This allows to determine α for 260 clumps with
well-known distances: these clouds were either at tangential
points or the distance ambiguity was previously resolved by
Roman-Duval et al. (2010) on the basis of 21 cm observations
of H i.

non–HMSF Cores. Results on Perseus and the Pipe Nebula
represent non-HMSF clouds. We have included masses from
near-infrared extinction data (Lada et al. 2008) and kinemat-
ics from the Green Bank Telescope (GBT) NH3 (1,1) data
(Rathborne et al. 2008) for 29 cores in the Pipe Nebula. The
temperature is fixed to the average NH3-based temperature of
10 K. In Perseus, we have combined masses from Bolocam
dust continuum data (Enoch et al. 2006) with gas temperatures
and velocity dispersions gleaned from GBT NH3 (1,1) data
(Rosolowsky et al. 2008). Enoch et al. provide the integrated
flux density for several apertures. We chose to adopt an aperture
size of 40′′ to derive mass estimates, since it closely matches the
GBT NH3 beam.

HMSF Cores. Since HMSF clouds are typically more dis-
tant than non-HMSF regions, interferometer observations are
required to achieve a spatial resolution similar to the resolution
of observations of low-mass cores. We thus compile a large sam-
ple of high-resolution observations of potential prestellar stages
of HMSF. For the quiescent cores in Orion, we have calculated
α combining gas kinematics and temperatures from Very Large
Array (VLA) NH3 (1,1) data of Li et al. (2013) with mass es-
timates from SCUBA 850 μm observations by Nutter & Ward-
Thompson (2007). We have estimated α for the high-mass cores
identified in G29.96−0.02 and W48 HMSF regions studied by
Pillai et al. (2011). For this, we used the 3 mm dust continuum
cores with associated NH2D 111–101 emission and used these
tracers to determine masses and kinematics, respectively. The
temperature is fixed to the average NH3-based temperature of
16 K. To characterize the Sridharan et al. (2005) sample, we
glean gas kinematics and estimated dust temperatures from the
NH3 data presented by Sridharan et al. and then estimate masses
from dust emission observations first reported by Beuther et al.
(2002). Data from a recent ALMA study of high-mass cores by
Tan et al. (2013) are also included. We used emission from dust
and N2D+ to constrain masses and gas motions. Since Tan et al.
use a different gas-to-dust ratio than us (i.e., 147 versus our
value of 100), we recompute the mass (given in their Table 3)
for the same gas-to-dust ratio as we have adopted in this work.
We follow Tan et al. in assuming dust and gas temperatures
of 10 K.

4. OBSERVED TRENDS IN VIRIAL PARAMETERS

4.1. Observed Trends

As seen in Figure 1, all of the data presented here follow a
number of common trends. Most fundamentally, within a given
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Table 2
Virial Parameter Power Laws

Sample α0 αmin Mmax/M� hα δlog10(α)

Enoch et al. 0.00 0.33 6 −0.99 0.19
Heyer et al. 3.11 1.71 1.4 × 105 −0.12 0.30
Lada et al. 0.05 0.65 20 −0.68 0.15
Li et al. 0.02 0.64 16 −0.79 0.21
Pillai et al. 0.17 0.15 1.3 × 103 −0.61 0.19
Roman-Duval et al. 2.00 0.16 1.0 × 106 −0.37 0.33
Sridharan et al. 0.55 1.11 226 −0.47 0.13
Tan et al. 0.06 0.39 43 −0.62 0.17
Wienen et al. 0.68 0.20 1.9 × 104 −0.43 0.27

sample, all data follow a power law:

α = α0 · (M/103 M�)hα (8)

with a similar slope, hα , and a range of intercepts, α0. This
power-law behavior has already been noted by BM and also
reported by, e.g., Lada et al. (2008) and Foster et al. (2009). To
illustrate these trends, fits to the Lada et al. (2008) and Wienen
et al. (2012) samples are shown in Figure 1.

The sequences formed by a given sample terminate at a
maximum mass, Mmax, corresponding to a minimum virial
parameter, αmin. This is remarkable, since larger masses—and
therefore lower virial parameters—would be easily detected, if
present. In contrast, sequence terminations at lower mass cannot
be determined due to limited mass sensitivities. To highlight this
trend, one may rewrite Equation (8) as

α = αmin · (M/Mmax)hα , (9)

where α0 = αmin · (Mmax/103 M�)−hα . Table 2 summarizes the
power laws representing the various samples.7 To gauge the ac-
curacy of these fits, the table also lists the root mean square (rms)
deviation between the logarithms of the actual observations and
the fit: δlog10(α) = 〈[log10(αi) − log10(α(Mi))]2〉1/2.

While some trends are similar for all samples, others differ
among the various studies.

1. When considering objects of increasing mass, all samples
terminate at a maximum mass and minimum virial param-
eter, Mmax and αmin. Values αmin � 2 are observed for
a number of samples. Some observations for individual
fragments are even below the αmin derived from fits to the
samples.

2. All samples have very similar α(M) slopes, hα , observed
to be in the range 0 < −hα < 1.

3. The samples do significantly differ in their intercepts,
α0. Differences by more than an order of magnitude are
observed.

Note that the observed anti-correlation between mass and virial
parameter is not a consequence of an unfortunate combination
of errors in mass estimates and the inherent relation α ∝ M−1.
Uncertainties in mass estimates are of order of a factor of two
(Section 6.2), while all samples span more than an order of
magnitude in mass. Errors in mass estimates can therefore not
significantly affect the observed correlations.

7 In practice, we fit linear laws y = log10(α0) + hα · x to data of the form
x = log10(M/103 M�) and y = log10(α).

Table 3
Mass-size and Linewidth-size Laws

Sample hM σv,0/km s−1 δlog10(σv )

Enoch et al. · · · a 0.49 0.20
Heyer et al. 1.40 ± 0.07 1.42 0.16
Lada et al. 2.46 ± 0.14 0.20 0.35
Li et al. 1.86 ± 0.66 0.85 0.18
Pillai et al. 2.22 ± 0.61 0.69 0.15
Roman-Duval et al. 2.36 ± 0.02 0.69 0.18
Sridharan et al. 1.80 ± 0.23 1.15 0.12
Tan et al. 2.96 ± 0.95 0.74 0.12
Wienen et al. 1.77 ± 0.07 1.05 0.16

Note. a No trend with radius, since all observations are obtained for
a fixed aperture.

4.2. Virial Parameter Slope

The trends in virial parameter slope and intercept result
from the slopes of the well-known mass-size and linewidth-
size relations for molecular clouds. To show this, we express
the virial parameter slope as d log(α)/ d log(M), the mass-size
slope as d log(M)/ d log(R), and the linewidth-size relation as
d log(σv)/ d log(R). Logarithmic differentiation of the defini-
tion of the virial parameter (Equation (1a)) yields

d log(α)

d log(M)
=

2 d log(σv )
d log(R) + 1 − d log(M)

d log(R)
d log(M)
d log(R)

(10)

(see Appendix B). This demonstrates that the various slopes
directly depend on one another. In practice, as seen in Table 2,
the virial parameter slope varies little between the various
samples. Following Equation (10), this is a consequence of how
the mass-size and linewidth-size laws combine in individual
samples.

To explore this more, Figure 3 shows the connections between
velocity dispersion, radius, and mass. This representation sug-
gests that the cloud fragments in a given sample obey common
mass-size and linewidth-size relations described by power laws
(note that we investigate trends for the non-thermal velocity
dispersion, σv,nt):

M = M0 · (R/pc)hM and (11)

σv,nt = σv,0 · (R/pc)hσv . (12)

Table 3 lists fitted8 properties for the various samples. To
indicate trends, the fits for the Lada et al. (2008) and Wienen
et al. (2012) samples are indicated in Figure 3.

For linewidth-size laws, we experiment with assuming a
common slope of hσv

= 0.32. This is the slope derived
when fitting all data with a common relation. The fit gives an
intercept σv,0 = 0.8 km s−1. The rms deviation between fit and
observations is δlog10(σv ) = 〈[log10(σv,i/σv(Ri))]2〉1/2 = 0.24,
i.e., the rms scatter is of the order of a factor 100.24 = 1.7.
When we use hσv

= 0.32 to fit individual samples, the fit results
and deviations given in Table 3 are obtained. For all but one
sample, we find good fits characterized by δlog10(σv ) < 0.2, i.e.,
an rms scatter of a factor < 1.6. For the Lada et al. (2008)
study, δlog10(σv ) = 0.35, equivalent to a factor 100.35 = 2.2, is
obtained. As already noted by Lada et al., the latter probably

8 Again, we employ linear fits to the properties y = log10(M), y = log10(σv),
and x = log10(R).
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Figure 3. Mass-size and linewidth-size trends in our catalog. Colored symbols refer to the samples indicated in Figure 1.

(A color version of this figure is available in the online journal.)

reflects the fact that the dense cores in the Pipe Nebula are
“coherent” (Barranco & Goodman 1998; Goodman et al. 1998),
i.e., thermal motions play a significant or dominant role. The
residual non-thermal motions are often negligible and they do
not closely obey linewidth-size laws. With the exception of the
Lada et al. sample, the derived intercepts are within a factor
of two of the intercept derived for a common fit to all data,
σv,0 = 0.8 km s−1.

This shows that the mass-size and linewidth-size laws
are indeed relatively similar for all samples. One could
now use the approximations d log(M)/ d log(R) ≈ hM and
d log(σv)/ d log(R) ≈ hσv

to derive hα as d log(α)/ d log(M)
via Equation (10). In practice, though, this is an exercise of lim-
ited value, given the approximations involved. In any case, as
shown by Equation (10), the slopes depend on one another.

We note that a virial parameter slope hα = −2/3 has
previously been predicted by BM. For example, Lada et al.
(2008) interpret their data in BM’s framework. Specifically,
a value of hα = −2/3 is expected if all fragments in a
sample have the same mean density and the same veloc-
ity dispersion. To see this, one may use the mean den-
sity 〈
〉 = M/(4/3 π R3) to rewrite the virial parameter as
α = C · σ 2

v M−2/3 〈
〉−1/3, where C is a numerical constant.
This implies α ∝ M−2/3 and thus hα = −2/3, if σv and 〈
〉
are constant. BM highlight that 〈
〉 is indeed constant in sam-
ples of pressure-confined fragments—i.e., where self-gravity is
negligible—that are subject to the same confining pressure and
have a common σv . Many of the slopes noted in Table 2 are
about consistent with hα = −2/3 and fulfill this prediction for
pressure-confined fragments. Note, however, that self-gravity
plays a significant role in most of the samples, as indicated by
values of αmin much below αBE. The aforementioned theory
predicting hα = −2/3, which only applies to fragments with
negligible self-gravity, does thus not apply.

4.3. Virial Parameter Intercept

To explore the virial parameter intercepts, consider mean
mass surface densities, 〈ΣM〉 = M/(πR2). Substitution of the
linewidth-size law in Equation (1), plus replacing R with 〈ΣM〉

and M, yields

α = 1.2

(
σv

σv,nt

)2

×
( σv,0

km s−1

)2 (M/103 M�)hσv −1/2

(〈ΣM〉/0.066 g cm−2)hσv +1/2
, (13)

where we use that 1 g cm−2 = 4800 M� pc−2. The factor
(σv/σv,nt)2 provides a correction in the case that non-thermal
gas motions are important. Note that Equation (13) does
not present an approximation; for example, provided that
parameters for individual fragments are substituted, Figure 1
could be constructed via Equation (13) in all details.

This shows that the virial parameter intercept strongly de-
pends on the linewidth-size intercept and the mean mass surface
density of a sample. The latter varies dramatically between the
samples, as seen in Table 1, largely due to the sensitivity of dif-
ferent observational methods. As in the case of Equation (10),
we abstain from attempting to substitute characteristic values
for samples into Equation (13). Experimentation shows that,
e.g., σv,0 and 〈ΣM〉 vary too strongly within samples to derive
meaningful results.

4.4. Low Virial Parameters

To fully describe the observed virial parameter laws, we
finally need to interpret the observed minimum virial parameters
αmin � 2. The remainder of the paper is dedicated to this.

5. IMPLICATIONS OF LOW VIRIAL PARAMETERS

Figure 1 and Table 2 show that the observed minimum virial
parameters in many samples fall below the fiducial critical value
α = 2 by a factor of five or more. This is a significant difference
beyond the range expected from observational uncertainties,
as we explore in Section 6. Given critical virial parameters
αB=0 � 2, fragments characterized by α � 2 must be unstable
to collapse unless they are supported by significant magnetic
fields. In this section, we discuss what this conclusion means
for our understanding of the star formation process.

7
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Figure 4. Implications for star formation physics. Yellow shading highlights the region in which cloud fragments are not massive enough to host HMSF. The limit
drawn in this figure is taken from Kauffmann & Pillai (2010) and assumes—in contrast to all other parts of the paper—a dust opacity κ(ν) = κOH(ν)/1.5. Red
lines in panel (a) give the minimum velocity dispersion needed to render a non-magnetized cloud fragment stable against gravitational collapse (α = 2). Panel (b)
presents estimated virial parameters as a function of mass and size, as expected for 15 K gas temperature and a common linewidth-size law with hσv = 0.32 and
σv,0 = 0.8 km s−1. Red shading indicates where competitive accretion is expected to be possible (α < 1). In panel (c), the same temperature and linewidth-size law are
assumed to estimate the minimum “critical” magnetic field strength needed to render a cloud fragment stable against gravitational collapse. The gray shading indicates
cloud fragments with a mean visual extinction AV < 1 mag. That part of the parameter space is devoid of molecular clouds, since the mean visual extinction is too
low to shield the molecular gas from photodissociation.

(A color version of this figure is available in the online journal.)

To make the discussion more readable, some of the quantita-
tive details of the discussion have been removed to Appendix C.
The current section focuses on the main implications from the
analysis.

Note that the smallest virial parameters are found in regions
of HMSF. See, for example, Figure 1, where HMSF regions
are indicated by filled symbols. Specifically, the HMSF samples
from Pillai et al. (2011), Li et al. (2013), Tan et al. (2013), and
Wienen et al. (2012) contain virial parameters much smaller
than those in the non-HMSF samples by Lada et al. (2008)
and Enoch et al. (2006). Also, Table 2 lists the smallest αmin
for HMSF sites. This is a consequence of the high-mass of
HMSF clouds, which are observed to exceed an approximate
size-dependent threshold, M(R) > MHMSF(R) where

MHMSF(R) = 870 M�

(
κ(ν)

κOH(ν)/1.5

)−1 (
R

pc

)1.33

(14)

(Kauffmann & Pillai 2010; see the yellow shading in Figure 4).
This relation depends on the adopted dust opacity law. A
relation κ(ν) = κOH(ν)/1.5 was adopted in the original work
(Kauffmann et al. 2010a, 2010b; Kauffmann & Pillai 2010).
Equation (C1) demonstrates that M(R) > MHMSF(R) implies
α � 1 for radii ∼0.1 pc.

In essence, the observed virial parameters are low because the
observed velocity dispersions are low for the given mass and size
of a fragment. To provide a reference, Figure 4(a) illustrates the
velocity dispersion needed to achieve α = 2.

5.1. Short Lifetimes of High-mass Starless Cores

The study of HMSF is still trying to answer a central and
important riddle: why are there no starless cores of high mass
and density? The absence of such cores is significant, given
that many starless cores exist in non-HMSF regions (see, e.g.,

Evans et al. 2009 for statistics). After the discovery of Infrared
Dark Clouds (IRDCs), it has been speculated that some cores
within these clouds would represent high-mass starless cores
(e.g., Egan et al. 1998; Carey et al. 1998). Follow-up studies
do indeed show that IRDCs form high-mass stars (e.g., Beuther
et al. 2005; Pillai et al. 2006; Rathborne et al. 2007). Such work
also revealed potential high-mass starless cores in IRDCs (e.g.,
Sridharan et al. 2005; Swift 2009; Pillai et al. 2011; Wienen et al.
2012; Tan et al. 2013). However, to our best knowledge, the few
objects that were studied with targeted follow-up observations
are not found to be clear-cut high-mass starless cores.9

This implies that high-mass starless cores are rare. Such a
trend further implies that the lifetime of such cores must be low.
The low observed virial parameters might explain why this is
the case.

Cloud fragments with virial parameters α � 2 might collapse
very quickly, essentially in a free-fall time, if magnetic fields
are insufficient for support against self-gravity. This follows
from the fact that non-magnetized cloud fragments with virial
parameters α � αBE are not supported against gravitational
collapse. In HMSF regions, mass and size are related by
the approximate threshold for HMSF, Equation (14). When
we substitute this relation into the equation for the free-fall
timescale (Appendix C.2), we find that τff < 5.5 × 104 yr ·
(M/10 M�)0.62 holds for cloud fragments M > MHMSF deemed
able to form high-mass stars. This implies short lifetimes for
non-magnetized fragments, just as needed to explain the absence
of high-mass starless cores.

9 Zhang & Wang (2011) find H2O masers near the candidate HMSF starless
core from Swift (2009), and Wang et al. (2006) find them in the region studied
by Tan et al. (2013). These masers originate in the outflows from young stars
and their presence indicates the existence of such stars in these clouds. It is,
however, not clear in which of the many cores in the region these stars do
form. Further, at higher spatial resolution, Zhang & Wang (2011) find no
compact cores of high mass in the Swift (2009) candidate.
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5.2. “Turbulent Core Accretion” in High-mass Star Formation

HMSF requires high accretion rates onto the stars. For
example, in Pillai et al. (2011), we summarize previous work
suggesting that accretion rates � 10−4 M� yr−1 are needed to
form stars of mass � 10 M� during the estimated duration of
the accretion phase � 105 yr. Accretion rates of this order are,
for example, expected for the collapse of spheres that were
initially in hydrostatic equilibrium and supported by sufficiently
fast random gas motions. In non-magnetized spheres, stellar
accretion rates Ṁ� � 2.3 × 10−4 M� yr · (σv/km s−1)3 are then
possible (Shu 1977; McKee & Tan 2002, 2003; Pillai et al.
2011). The non-magnetized version of the “turbulent core”
HMSF model by McKee & Tan (2002, 2003) posits that high
accretion rates in HMSF do indeed result from the collapse of
cloud fragments initially supported by high velocity dispersions.
However, there are issues with this picture.

For example, as we show throughout this paper, many HMSF
cloud fragments have virial parameters much below the critical
value for non-magnetized media. This means that many HMSF
fragments are not in hydrostatic equilibrium and so the original
model from McKee & Tan (2002) does not apply, as it requires
α � 2. This problem is also noted by Tan et al. (2013). They
suggest including additional support from magnetic fields. This
would, however, reduce the role of σv and represent a major
modification of the initial McKee & Tan (2002) model. Such
refinements are explored by McKee & Tan (2003). In this more
complete picture, the velocity dispersion σv is not the only factor
controlling Ṁ�.

Another issue is that, for the non-magnetized case, the
substitution of observed velocity dispersions yields accretion
rates only marginally consistent with Ṁ� � 10−4 M� yr−1

(Pillai et al. 2011). If magnetic fields are present, the model
accretion rates would be higher by a factor of 6.6 when adopting
the fiducial magnetic field properties proposed by McKee & Tan
(2003; their H0 = 1 and φB = 2.8).

5.3. Competitive Accretion

It is currently not clear by which accretion mechanism high-
mass stars grow in mass. One theory posits that individual
dense cores produce individual stars or close binaries. Here,
we refer to this process as “monolithic accretion” (Zinnecker &
Yorke 2007; e.g., the McKee & Tan 2002, 2003 models belong
to this category). Alternative theories propose that no well-
defined HMSF dense cores exist. In this scenario of “competitive
accretion,” several stars vie with one another to accrete from a
common gas reservoir. This star formation mechanism has been
studied by, e.g., Bonnell et al. (1997, 2001a, 2001b) and Bate &
Bonnell (2005).

Krumholz et al. (2005) show that competitive accretion
requires virial parameters < 1. This follows from the constraints
that competitive accretion works best if the gas densities are
high and the relative velocity between star and gas are small
and can be evaluated for the case of Bondy–Hoyle accretion.
In their original work, Krumholz et al. (2005) compiled virial
parameters from a small sample of clouds and clumps. Those
data suggested that α � 1. Krumholz et al. interpreted this as
evidence that competitive accretion is not possible in HMSF
regions.

The larger sample shown in Figure 1, however, shows that
α < 1 is frequently observed in regions of HMSF. This new
result demonstrates that competitive accretion would be possible
in many of the clouds studied here. Note that this does not,

however, constitute evidence against monolithic accretion. We
also caution that some of the fragments with α < 1 might not be
massive enough to form entire clusters. In that case, competitive
accretion cannot operate, since it requires the presence of a
significant cluster. Figure 4(b) illustrates the mass-size domain
in which α < 1, so that competitive accretion becomes possible.

Note, furthermore, that Krumholz et al. (2005) propose the
additional limit that competitive accretion requires α2 M �
10 M�. The exact value of this threshold depends on model
details (Krumholz et al. 2005) and it may be larger than the
fiducial value by an order of magnitude (Bonnell & Bate 2006).
When selecting fragments with M(R) > MHMSF(R) from the
HMSF samples, six objects fulfill α2 M < 10 M�.

5.4. Fragments with Small Virial Parameters
are Not Collapsing

By definition, α < αcr implies that a cloud fragment is
susceptible to collapse. Thus, it has often been argued that cloud
fragments with virial parameters α � αBE ≈ 2 are indeed
collapsing to form a star. However, this is a flawed argument:
provided that energy is conserved, fragments well into collapse
contain gas rapidly moving inward and velocity dispersions
obtained under these conditions imply virial parameters ≈ 2a =
4 ± 2 (see Appendix C.3), since a = 2 ± 1. As a consequence,
fragments with α � αBE ≈ 2 are not likely to be in a state
of collapse. This has previously been realized by, for example,
Larson (1981) and Ballesteros-Paredes (2006).

One important caveat is that this argument assumes conser-
vation of energy. This is a reasonable ansatz. To circumvent
this constraint, energy would need to be drained from the sys-
tem at a very high rate. Doing so is not a trivial problem (see
Appendix C.3 for some example calculations).

It thus appears plausible that fragments with virial parameters
�2 are not collapsing. Fragments in this state would then need
to be supported by additional forces. Alternatively, they might
be short-lived and soon collapse in a free-fall time (Section 5.1).

5.5. Evidence for Significant Magnetic Fields?

Let us assume that cloud fragments with α � 2 are indeed
not undergoing collapse, as argued in Section 5.4. The most
straightforward explanation for such fragments would be that
they are supported against collapse by significant magnetic
fields.

Equation (6) gives the critical virial parameter in this situ-
ation. This relation only depends on MΦ/MBE, which essen-
tially measures the relative importance of support from mag-
netic fields relative to random gas motions. If we require that
α � αcr,Φ, we can rewrite Equation (6) to obtain

MΦ

MBE
� 2

α
− 1 . (15)

Combination of Equations (3) and (5) permits us to estimate the
magnetic field strength as

B = 81 μG
MΦ

MBE

( σv

km s−1

)2
(

R

pc

)−1

. (16)

For example, the lowest observed virial parameters are of
order 0.2. This implies mass ratios MΦ/MBE ≈ 10. Those
cloud fragments are also observed to have velocity dispersions
∼0.5 km s−1, radii ∼0.1 pc, and masses ∼102 M�. Following
Equation (16), this implies field strengths ∼2 mG. This is
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a very high value. However, it is marginally in the range
expected for cloud fragments of very high density. Crutcher
(2012) suggests an approximate density-dependent upper limit
to the magnetic field strength (Appendix C.4). Substitution
of the aforementioned masses and sizes gives field strengths
B � 1.5 mG, marginally consistent with the above estimate
∼2 mG.

Representative values for the maximum critical mass of
magnetized clouds, MB � MBE + MΦ, are given in Figure 4(c).
All cloud fragments below the B = 0 curve are subcritical even
if not supported by magnetic fields.

5.6. Mass Estimates from Virial Analysis

In the absence of better tracers, the virial mass Mvir ≡
5σ 2

v R/G is often used to estimate the true mass, M. Basically,
this assumes that M ≈ Mvir. Since α ≡ Mvir/M by definition,
this requires that α ≈ 1. Figure 1 shows that, for individual cloud
fragments, this assumption is violated by factors 10 and above:
in this case, the mass estimated via a virial analysis is off by the
same factor. For individual objects, this large uncertainty must
be kept in mind when using masses estimated in this fashion.

That said, it might be appropriate to determine, e.g., the total
gas mass contained in a cloud sample via a virial analysis. As
seen in Figure 1, the scatter is large for individual objects, but
the average virial parameter is often well defined for a given
sample and is often observed to be of order unity. A careful
analysis of cloud samples could exploit such trends.

6. VIRIAL PARAMETERS: IMPACT OF UNCERTAINTIES

The analysis above builds on various assumptions to calculate
α and αcr. Here, we explore whether uncertainties in these
assumptions might affect our conclusions.

6.1. Observational Approaches

The way in which properties are calculated can significantly
affect the results. This is seen in Figure 1, where the results
do significantly differ between Heyer et al. (2009) and Roman-
Duval et al. (2010), although both studies build on the same
set of observations. The difference lies in the way the cloud
structure was extracted: Heyer et al. examine boxes drawn
around clouds, which serves their purpose but is not ideal to
measure α, while Roman-Duval et al. closely follow the cloud
shape and derive properties better suited for a virial analysis.
This example demonstrates that determining the virial parameter
is a difficult task.

6.2. Errors in Mass Estimates

The most commonly adopted dust model for cold dense cores,
which is also used in this paper, has been put forward by
Ossenkopf & Henning (1994). The resulting opacity is interme-
diate to the values proposed by, e.g., Krügel & Siebenmorgen
(1994) and Motte et al. (1998), who put forward values higher
or lower by a factor of two. If we confine ourselves to the range
in these models, even if the true dust opacities were higher, that
would account for only a systematic uncertainty of a factor of
two in dust masses and therefore virial parameters. An error in
the opacity of a factor >10, as needed to render fragments with
estimated α = 0.2 subcritical, seems implausible.

The mass is approximately inversely proportional to the
adopted dust temperature. For some objects in our analysis,
dust temperatures were estimated by assuming that they are

similar to gas temperatures. For example, using observations
of NH3, Rathborne et al. (2008) derive temperatures for the
sample of Lada et al. (2008) and Li et al. (2013) obtain their
own data for their sample. For starless cores, such work typically
finds temperatures in the range of 10–15 K. Direct estimates of
dust temperatures from continuum emission yield similar values
for regions not in the immediate vicinity of HMSF (e.g., Hill
et al. 2011). Following Kauffmann et al. (2008), the conversion
factor between dust emission and mass varies by a factor �1.75
for dust temperatures in the range 10–15 K and dust emission
observations at wavelengths �850 μm relevant for our analysis.
At higher temperatures, for example close to young embedded
stars, a temperature variation by 5 K would result in smaller
uncertainties in the conversion factor. A factor of 1.75 thus
provides a conservative upper limit to the temperature-related
uncertainties in the virial parameter estimates presented here.
In our analysis, we adopt the dust temperature the original
authors assumed based on their in-depth knowledge of the
observed region, unless better constraints from complementary
observations exist. We thus expect a much smaller temperature
and mass uncertainty to hold for most of the samples.

6.3. Errors in Distance Estimates

Measurements of mass and radius scale with distance as
M ∝ d2 and R ∝ d, implying α ∝ d−1. Distances for the
majority of star-forming regions are still derived from kine-
matics, based on a Galactic rotation curve. Accurate paral-
lax distance measurements of star-forming regions recently re-
vealed that their motions deviate from circular motions by up
to ≈15 km s−1. The kinematic distances are generally larger
than parallax-based ones and can be larger by up to a factor
of two (Reid et al. 2009). If this situation holds generally, the
virial parameter would be underestimated by up to the same
factor �2.

6.4. Extreme Fragment Geometries and Cloud Complexes

The issue of non-spherical fragment geometries was already
considered in Section 2, based on Appendix A. We concluded
that the virial parameter is a good measure of the kinetic-to-
potential energy ratio, even when considering highly flattened
or elongated structures for a range of density gradients. It seems
implausible that extreme viewing geometries or density gradi-
ents could produce observed viral parameters �2 in objects
that are stable against collapse. Also, note that all of the HMSF
samples presented in Figure 1 have minimum virial parameters
�2. The prevalence of small virial parameters strongly argues
against an influence of unusual viewing geometries.

Note, however, that all the models discussed in Section 2 and
Appendix A assume flat or centrally condensed density struc-
tures that roughly obey a point symmetry. This assumption may
be significantly violated when considering larger complexes.
When considered at their full extent, regions like the Taurus
molecular cloud (e.g., Goldsmith et al. 2008) are clearly not
centrally condensed and do not exhibit any clear symmetry. In
fact, regions of high gas density are distributed within large ar-
eas devoid of any significant mass reservoir. It is not clear how
well the gravitational potential energy is approximated by the
formalism adopted above. Also, it is not clear that pressure from
kinetic gas motions, magnetic fields, etc., is really relevant for
cloud support.
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6.5. Role of Rotation and Surface Pressure

Caselli et al. (2002) study rotation in a sample of dense cores
of relatively low mass that are located in the solar neighborhood
(most cores are closer than 500 pc; also see Goodman et al.
1993). They derive rotational-to-gravitational energy ratios
<0.1. This implies that rotation can be neglected in these cores.
Based on 8 μm extinction mapping and ammonia data from
the VLA, Ragan et al. (2009, 2012) obtain virial parameters
of 0.1–0.7 for a sample of six IRDCs (their definition of α is
identical to ours). Even in this sample with α < 1, Ragan et al.
(2012) demonstrate that the rotational-to-gravitational energy
ratios are �2 × 10−4. Again, rotation appears to be negligible.
However, we caution that the study of velocity gradients in
clouds is not a settled topic yet (e.g., Kirk et al. 2010).

The cloud models employed to gauge αcr assume that cloud
fragments are in equilibrium with a constant surface pressure.
Given the dynamic nature of clouds, this assumption can only
be fulfilled in an approximate sense and might be significantly
violated in some situations. This can influence the stability of
cloud fragments.

However, deviations from pressure equilibrium, as well
as fluctuations in the external pressure, should only have a
significant impact on cloud fragments for which confinement
by an outside pressure is relevant. As discussed in Section 2,
such cloud fragments have virial parameters significantly larger
than 2a = 4 ± 2. In other words, the external pressure plays
no significant role for the fragments with α � 2 that are the
focus of the current paper: these fragments are largely confined
by their own gravity.

7. SUMMARY

The stability of cloud fragments against collapse is of utmost
importance for the study of molecular clouds and the star
formation process. It can be gauged using the virial parameter,
α ≡ 5σ 2

v R/(GM), which is easily calculated from a fragment’s
velocity dispersion, radius, and mass. Fragments are unstable
to collapse if they have supercritical virial parameters, α < αcr.
Non-magnetized cloud fragments are expected to have critical
virial parameters αcr � 2, while αcr � 2 is possible for strong
magnetic fields (Section 2).

Past research suggested that virial parameters α � 2 prevail in
clouds. This would suggest that collapse toward star formation
is a gradual and relatively slow process. It also suggests that
magnetic fields are not needed to explain the observed cloud
structure. But many recent studies, in particular in regions of
HMSF, yield much lower virial parameters α < 2. To study
the implications of these results, we compile a catalog of 1325
virial parameter estimates that are obtained in a standardized
fashion (Section 3). In particular, we adopt a single dust opacity
law for all samples and standardize the definitions of α, M, R,
and σv . The results are shown in Figure 1 and Table 2. We find
that, within a given sample, the virial parameters follow a trend
α = αmin · (M/103 Mmax)hα with 0 < −hα < 1 (Section 4). For
many samples, αmin � 2.

These observations have a number of important implications
for the physics governing the formation of stars, in particular
those of a very high mass.

1. The scarcity of high-mass starless cores could be explained
(Section 5.1). If such cores are not at all supported against
collapse, as indicated by α � 2, they would collapse in
a free-fall timescale <105 yr. The starless phase would be

shorter than this timescale and few high-mass cores should
exist in this state.

2. “Turbulent core accretion” in HMSF (e.g., McKee & Tan
2002, 2003) would not be applicable, unless additional
support comes from magnetic fields (Section 5.2). For
non-magnetized clouds, that model requires that random
“turbulent” gas motions provide significant support against
self-gravity. This could only be the case if α � 2.

3. Magnetic fields ∼1 mG would be required to support some
of the fragments with α � 2 against collapse (Section 5.5).
Fields of this strength would be marginally consistent with
observations of magnetic fields.

4. Competitive accretion (e.g., Bonnell et al. 1997) might play
a role in star formation (Section 5.3). That process requires
high gas densities and low velocity dispersions, implying
α < 1 (Krumholz et al. 2005), just as observed in many
cloud fragments.

These conclusions hinge on the assumption that the observed
virial parameters are relatively free of biases and that theory
correctly predicts critical virial parameters. Both assumptions
are unlikely to be wrong by factors of the order of 10, as needed
to explain all observed virial parameters without recourse to
models appropriate for α � 2 (Section 6).

The scatter in the virial parameter seen in Figure 1 also implies
that the virial mass is a very crude tool with which to assess cloud
masses (Section 5.6). To obtain good mass estimates from a
virial analysis, α ≈ 1 must hold. As we see in Figure 1, this
is not the case for a large number of cloud fragments. For an
individual cloud or cloud fragment, M and Mvir can differ by a
factor of 10 or more.
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APPENDIX A

THE VIRIAL PARAMETER: NON-ISOTHERMAL
MODELS AND COMPLEX DENSITY DISTRIBUTIONS

This appendix summarizes advanced aspects of the virial
parameter discussion that had to be skipped in Section 2. In
particular, we consider non-magnetized spheres supported by
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non-isothermal pressure, as well as deviations from the assumed
density profiles.

The Bonnor–Ebert model from Section 2 provides a help-
ful reference case for stability considerations. In the original
discussion, the velocity dispersion entering the Bonnor–Ebert
mass, σv , measures the gas temperature. It can also be taken
to represent a—spatially constant—velocity dispersion due to
random non-thermal “turbulent” gas motions.

In practice, though, velocity dispersions are usually not spa-
tially constant within molecular clouds. The velocity dispersion
typically increases with increasing spatial scale (e.g., Good-
man et al. 1998). Given density gradients, this means that the
velocity dispersion is anticorrelated with the gas density. One
often parameterizes these trends using a polytropic equation of
state relating pressure and density, P ∝ 
γP . Provided that the
pressure comes from random gas motions, P (r) = 
(r) σ 2

v (r),
where a dependence on radius r is considered. In this case, the
velocity dispersion obeys σv(r) ∝ 
(r)(γP −1)/2 and is anticorre-
lated with the density for polytropic exponents γP < 1. Such
polytropes are, for example, considered by McKee & Holliman
(1999). Combination of their Equations (64) and (67) shows that

Mcr � 2.47
〈σ 2

v 〉R

G

(
2 − γP

4 − 3γP

)1/3

(A1)

is the critical mass for pressure-confined hydrostatic equilibrium
spheres supported by non-thermal pressure characterized by
γP < 1, where 〈σ 2

v 〉 represents a mass-weighted average.
Substitution in Equation (1a) results in critical virial parameters
αcr � 2.02 for polytropic exponents in the range 0 � γP < 1.
This implies αB=0 � αBE ≈ 2 and MB=0 � MBE, as already
discussed in Section 2.

Cloud fragments are, of course, not necessarily well approx-
imated as spheres. Also, internal density gradients may differ
from those prevailing in the aforementioned idealized models.
The impact of these factors is absorbed into the parameter a. For
spheroidal mass distributions, BM demonstrate that the impact
of deviations from a spherical state, aϑ , can be separated from
the influence of density gradients, a
, and that it is possible to
write a = aϑ · a
.

To parameterize our problem, we follow BM in their assump-
tion that the considered gaseous body is a triaxial ellipsoid:
the extent along two semi-axes is assumed to be identical and
gives the equatorial radius, Req. The extent along the third semi-
axis is Z: the body is oblate (“pancake–shaped”) for Z < Req,
a sphere in the case Z = Req, and prolate (“cigar–shaped”)
when Z > Req. For a given projection on the plane of the sky,
with projected semi-axes Rmin and Rmax, the observed radius
is Robs = (Rmin · Rmax)1/2. We only summarize the results of
calculations established by BM. We refer the reader to that pub-
lication for details.

First, consider the ratio between the true gravitational poten-
tial energy Epot, calculated from the three-dimensional shape of
the body, and the “observed” energy Epot,obs, calculated from
Robs and the mass. Assuming a random projection onto the sky
and Z/Req < 10, we find that |Epot|/|Epot,obs| = 1.0 ± 0.5 for
80% of all random viewing directions. In other words, it is pos-
sible to estimate the potential energy of a cloud fragment with
a reasonable degree of reliability.

The same set of calculations also permits us to estimate how
much Robs differs between different statistical realizations of
the projection. For a given axis ratio Z/Req, we use the average
projected radius 〈Robs〉 as a reference. Again, for 90% of the

cases, Robs/〈Robs〉 = 1.0 ± 0.5 in the range Z/Req < 10.
This excludes, however, very small ratios Z/Req � 0.2, where
deviations are significantly larger.

Second, consider the impact of density gradients. Assume
that the body consists of ellipsoidal density shells, so that the
density gradient is 
 ∝ r−k along any radius vector. In that
case, a
 = (1 − k/3)/(1 − 2k/5), following BM. This gives
a
 → 1 for k → 0 and a
 → ∞ for k → 5/2. A fiducial
density gradient k = 2 gives a
 = 5/3. For 0 < k < 2.3, values
a
 = 2 ± 1 hold.

APPENDIX B

THE VIRIAL PARAMETER SLOPE AS A CONSEQUENCE
OF MASS-SIZE AND LINEWIDTH-SIZE LAWS

It is straightforward to show that mass-size and linewidth-
size laws imply the observed virial parameter slope. Consider
the definition of the virial parameter, given in Equation (1a).
Logarithmic differentiation yields

d log(α) = 2 d log(σv) + d log(R) − d log(M) (B1)

= 2
d log(σv)

d log(R)
d log(R) + d log(R) − d log(M) (B2)

=
(

2
d log(σv)

d log(R)
+ 1 − d log(M)

d log(R)

)
d log(R)

d log(M)
d log(M).

(B3)

Rearrangement gives

d log(α)

d log(M)
=

2 d log(σv )
d log(R) + 1 − d log(M)

d log(R)

d log(M)/ d log(R)
. (B4)

Obviously, the virial parameter slope, d log(α)/ d log(M), is a
direct result of the relevant mass-size slope, d log(M)/ d log(R),
and the linewidth-size relation, d log(M)/ d log(R). Section 4.2
explores this result.

APPENDIX C

IMPLICATIONS OF LOW VIRIAL PARAMETERS

This appendix includes several calculations relevant to the
interpretation of the implications of low virial parameters.
Section 5 applies the calculations to the observations.

C.1. Low Virial Parameters are Characteristic of HMSF

In the limit σv = σv,nt, substitution of the mass-size threshold
for HMSF (Equation (14)) and the linewidth-size relation
(Equation (12)) into Equation (1) gives

α = 1.3

(
M

MHMSF(R)

)−1 ( σv,0

0.8 km s−1

)2
(

R

0.1 pc

)0.31

.

(C1)
Since σv,0 ≈ 0.8 km s−1, virial parameters α < 1 typically
hold for HMSF fragments where M > MHMSF(R). Likewise,
small values of α suggest large values of M/MHMSF. The
observed small virial parameters are therefore most relevant
for the formation of high-mass stars.
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C.2. Short Lifetimes of High-mass Starless Cores

The free-fall timescale is given by

τff =
(

3π

32 G 〈
〉
)1/2

= 1.7 × 105 yr

(
M

10 M�

)−1/2 (
R

0.1 pc

)3/2

, (C2)

where 〈
〉 = M/(4/3 π R3) is the mean density of a sphere. In
HMSF regions, mass and size are related by the approximate
threshold for HMSF, Equation (14). When we substitute this
relation, we find that

τff < 5.5 × 104 yr

(
M

10 M�

)0.63

(C3)

holds for cloud fragments M > MHMSF deemed able to form
high-mass stars.

C.3. Fragments with Small Virial Parameters
are not Collapsing

Consider a fragment with α < αcr with an initial energy
content Ekin,0, Epot,0. This fragment will begin to contract
because it is supercritical. Unless some process drains energy
from the fragment, conservation of energy requires that the
potential energy released by contraction will lead to an increase
in kinetic energy, i.e., ΔEkin = |ΔEpot|. As a consequence, the
virial parameter in the contracting cloud becomes

α = a
2 (Ekin,0 + ΔEkin)

|Epot,0 + ΔEpot| . (C4)

In the limit of contraction to radii much smaller than the
initial radius where contraction started, |Epot,0| � |ΔEpot| and
Ekin,0 � ΔEkin = |ΔEpot|. Thus,

α → 2 a (C5)

follows for cloud fragments having undergone significant con-
traction. Typically, a = 2 ± 1 (Appendix A), roughly implying
α → 4 ± 2 during collapse.

In fact, virial parameters �αcr are not found at any stage
during collapse. Equation C4 implies that α monotonously
changes from its initial value, α0 = 2a Ekin,0/|Epot,0|, to 2a.
Since collapse is initiated when the cloud fragment reaches the
critical state, it is plausible to assume α0 = αcr. This means that,
during collapse, the virial parameter is between αcr and 2a.

The argument above only holds if energy is conserved. This
condition can only be violated if the timescale for energy
losses, τloss, is shorter than the one for the collapse occurring
in approximate free-fall fashion, τloss < τff . Energy could, for
example, be drained in the form of radiation from hot gas or in
the form of magnetohydrodynamic (MHD) waves. However, it
seems unlikely that the condition τloss < τff can be fulfilled.

Consider radiation from warm gas. The crossing time, τcross ≡
R/σv , is the characteristic timescale for conversion of kinetic
energy to heat (Mac Low & Klessen 2004). To have significant
energy loss via radiation, we need to have τcross < τff . Now,
combining the definition of the crossing time with the free-fall
timescale (Equation (C2)), we can rewrite the virial parameter
(Equation (1a)) as

α = 45

32

(
τff

τcross

)2

. (C6)

In this section, we consider supercritical cloud fragments
characterized by α � 2. For this situation, Equation (C6)
implies τcross � τff . This is in conflict with the condition for
significant energy losses from heating radiation during collapse,
τcross � τff . It follows that heating processes cannot help to
radiate energy away: this would require heating in fast gas
motions, which however also support the cloud fragment.

Alternatively, we can consider energy to be radiated away
via MHD waves traveling at the Alfvén velocity. The latter is
vA = B/(4π〈
〉)1/2, where we assume that the field is frozen
into the mass reservoir at mean density 〈
〉. To have significant
energy transport via MHD waves during collapse, the Alfvénic
crossing time τA = R/vA must be shorter than the free-fall
timescale, i.e., τA < τff . Now, the critical virial parameter for
strongly magnetized clouds can be approximated as

αB → 11.75

(
τA

τcross

)2

. (C7)

This approximation follows from α = αBE · (MBE/M)
(Section 2) in the limit that the critical mass becomes equal to
the magnetic flux mass, MB → MΦ. This is expected in the case
considered here since fast and relevant energy flows in MHD
waves, i.e., vA � σv , only become relevant for strong magne-
tization. Then, via substitution of Equations (C6) and (C7), the
condition α � αB results in τff � 2.88 τA. Combined with the
condition for significant energy flow during collapse, τA < τff ,
we obtain 0.35 τff � τA < τff . These conditions are marginally
fulfilled when τA ≈ τff . While significant energy flows are pos-
sible, highly efficient flows with τA � τff are thus ruled out by
these constraints.

C.4. Evidence for Significant Magnetic Fields?

Crutcher (2012) suggests an approximate density-dependent
upper limit B � 150 μG · (nH2/104 cm−3)0.65, where nH2 is the
H2 particle density. We obtain

B � 336 μG

(
M

10 M�

)0.65 (
R

0.1 pc

)−1.95

(C8)

if we replace the density with its mean value, M/(4/3 π R3).
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