1,527 research outputs found

    Static quark anti-quark free and internal energy in 2-flavor QCD and bound states in the QGP

    Full text link
    We present results on heavy quark free energies in 2-flavour QCD. The temperature dependence of the interaction between static quark anti-quark pairs will be analyzed in terms of temperature dependent screening radii, which give a first estimate on the medium modification of (heavy quark) bound states in the quark gluon plasma. Comparing those radii to the (zero temperature) mean squared charge radii of cha rmonium states indicates that the J/ψJ/\psi may survive the phase transition as a bound state, while χc\chi_c and ψâ€Č\psi' are expected to show significant thermal modifications at temperatures close to the transition. Furthermore we will analyze the relation between heavy quark free energies, entropy contributions and internal energy and discuss their relation to potential models used to analyze the melting of heavy quark bound states above the deconfinement temperature. Results of different groups and various potential models for bound states in the deconfined phase of QCD are compared.Comment: 6 pages, 8 figures, Lattice 2005 (Finite temperature and density

    Quark antiquark energies and the screening mass in a Quark-Gluon plasma at low and high temperatures

    Full text link
    We discuss quark antiquark energies and the screening mass in hot QCD using the non-perturbative lattice approach. For this purpose we analyze properties of quark antiquark energies and entropies at infinitely large separation of the quark antiquark pair at low and high temperatures. In the limit of high temperatures these energies and entropies can be related perturbatively to the temperature dependence of the Debye mass and the coupling. On the one hand our analysis thus suggests that the quark antiquark energies at (infinite) large distances are rather related to the Debye screening mass and the coupling than to the temperature dependence of heavy-light meson masses. On the other hand we find no or only little differences in all mass scales introduced by us when changing from quenched to 2-flavor QCD at temperatures which are only moderately above the phase transition.Comment: 5 pages, 2 figures, To appear in the proceedings of Workshop on Extreme QCD, Swansea, Wales, 2-5 Aug 200

    Short distance physics with heavy quark potentials

    Get PDF
    We present lattice studies of heavy quark potentials in the quenched approximation of QCD at finite temperatures. Both, the color singlet and color averaged potentials are calculated. While the potentials are well known at large distances, we give a detailed analysis of their short distance behavior (from 0.015 fm to 1 fm) near the critical temperature. At these distances we expect that the T-dependent potentials go over into the zero temperature potential. Indeed, we find evidences that the temperature influence gets suppressed and the potentials starts to become a unique function of the underlying distance scale. We use this feature to normalize the heavy quark potentials at short distances and extract the free energy of the quark system in a gluonic heat bath.Comment: Lattice2001(hightemp), 3 pages, 2 figure

    Screening of heavy quark free energies at finite temperature and non-zero baryon chemical potential

    Full text link
    We analyze the dependence of heavy quark free energies on the baryon chemical potential (mu_b) in 2-flavour QCD using improved (p4) staggered fermions with a bare quark mass of m/T = 0.4. By performing a 6th order Taylor expansion in the chemical potential which circumvents the sign problem. The Taylor expansion coefficients of colour singlet and colour averaged free energies are calculated and from this the expansion coefficients for the corresponding screening masses are determined. We find that for small mu_b the free energies of a static quark anti-quark pair decrease in a medium with a net excess of quarks and that screening is well described by a screening mass which increases with increasing mu_b. The mu_b-dependent corrections to the screening masses are well described by perturbation theory for T > 2 T_c. In particular, we find for all temperatures above T_c that the expansion coefficients for singlet and colour averaged screening masses differ by a factor 2.Comment: 14 page

    Heavy quark free energies, potentials and the renormalized Polyakov loop

    Full text link
    We discuss the renormalized free energy of a heavy quark anti-quark pair in the color singlet channel for quenched and full QCD at finite temperature. The temperature and mass dependence, as well as its short distance behavior is analyzed. Using the free energies we calculate the heavy quark potential and entropy in quenched QCD. The asymptotic large distance behavior of the free energy is used to define the non-perturbatively renormalized Polyakov loop which is well behaved in the continuum limit. String breaking is studied in the color singlet channel in 2-flavor QCD.Comment: 3 pages, Lattice2003(nonzero

    Renormalized quark-anti-quark free energy

    Full text link
    We present results on the renormalized quark-anti-quark free energy in SU(3) gauge theory at finite temperatures. We discuss results for the singlet, octet and colour averaged free energies and comment on thermal relations which allow to extract separately the potential energy and entropy from the free energy.Comment: 5 pages, 2 figures, To appear in the proceedings of Workshop on Strong and Electroweak Matter (SEWM 2002), Heidelberg, Germany, 2-5 Oct 200

    An new order parameter with renormalized Polyakov loops

    Full text link
    It is well established that physical quantities like the heavy quark potentials get temperature independent at sufficiently short distances. As a first application of this feature we suggest a new order parameter for the confinement/deconfinement phase transition. Our investigations are based on recent lattice studies.Comment: 2 pages, 2 figures, contribution to 'Statistical QCD', Bielefeld, August 26-30, 200

    Heavy Quark Interactions in Finite Temperature QCD

    Full text link
    We study the free energy of a heavy quark-antiquark pair in a thermal medium. We constuct a simple ansatz for the free energy for two quark flavors motivated by the Debye-H\"uckel theory of screening.Comment: 4 pages, 4 figures, contribution to the proceedings of the International Conference on Hard and Electromagnetic Probes of High Energy Nuclear Collisions, Ericeira, Portugal, Nov. 4-10, 200

    Free energies of static three quark systems

    Full text link
    We study the behaviour of free energies of baryonic systems composed of three heavy quarks on the lattice in SU(3) pure gauge theory at finite temperature. For all temperatures above TcT_c we find that the connected part of the singlet (decuplet) free energy of the three quark system is given by the sum of the connected parts of the free energies of qqqq-triplets (-sextets). Using renormalized free energies we can compare free energies in different colour channels as well as those of qqqq- and qqqqqq-systems on an unique energy scale.Comment: 5 pages, 6 figures, Contribution to Strong and Electroweak Matter 2004 (SEWM04), Helsinki, Finland 16-19 June 200

    Lattice constraints on the thermal photon rate

    Get PDF
    We estimate the photon production rate from an SU(3) plasma at temperatures of about 1.1Tc and 1.3Tc. Lattice results for the vector current correlator at spatial momenta k ~ (2-6)T are extrapolated to the continuum limit and analyzed with the help of a polynomial interpolation for the corresponding spectral function, which vanishes at zero frequency and matches to high-precision perturbative results at large invariant masses. For small invariant masses the interpolation is compared with the NLO weak-coupling result, hydrodynamics, and a holographic model. At vanishing invariant mass we extract the photon rate which for k \gsim 3T is found to be close to the NLO weak-coupling prediction. For k \lsim 2T uncertainties remain large but the photon rate is likely to fall below the NLO prediction, in accordance with the onset of a strongly interacting behaviour characteristic of the hydrodynamic regime.Comment: 20 pages. v2: clarifications adde
    • 

    corecore