83 research outputs found

    Textural variations in Neogene pelagic carbonate ooze at DSDP Site 593, southern Tasman Sea, and their paleoceanographic implications

    Get PDF
    Changes in Neogene sediment texture in pelagic carbonate-rich oozes on the Challenger Plateau, southern Tasman Sea, are used to infer changes in depositional paleocurrent velocities. The most obvious record of textural change is in the mud:sand ratio. Increases in the sand content are inferred to indicate a general up-core trend towards increasing winnowing of sediments resulting from increasing flow velocity of Southern Component Intermediate Water (SCIW), the forerunner of Antarctic Intermediate Water. In particular, the intervals c. 19-14.5 Ma, c. 9.5-8 Ma, and after 5 Ma are suggested to be times of increased SCIW velocity and strong sediment winnowing. Within the mud fraction, the fine silt to coarse clay sizes from 15.6 to 2 µm make the greatest contribution to the sediments and are composed of nannofossil plates. During extreme winnowing events it is the fine silt to very coarse clay material (13-3 µm) within this range that is preferentially removed, suggesting the 10 µm cohesive silt boundary reported for siliciclastic sediments does not apply to calcitic skeletal grains. The winnowed sediment comprises coccolithophore placoliths and spheres, represented by a mode at 4-7 µm. Further support for seafloor winnowing is gained from the presence in Hole 593 of a condensed sedimentary section from c. 18 to 14 Ma where the sand content increases to c. 20% of the bulk sample. Associated with the condensed section is a 6 m thick orange unit representing sediments subjected to particularly oxygen-rich, late early to early middle Miocene SCIW. Together these are inferred to indicate increased SCIW velocity resulting in winnowed sediment associated with faster arrival of oxygen-rich surface water subducted to form SCIW. Glacial development of Antarctica has been recorded from many deep-sea sites, with extreme glacials providing the mechanism to increase watermass flow. Miocene glacial zones Mi1b-Mi6 are identified in an associated oxygen isotope record from Hole 593, and correspond with times of particularly invigorated paleocirculation, bottom winnowing, and sediment textural changes

    ST6GAL1-mediated aberrant sialylation promotes prostate cancer progression

    Get PDF
    Aberrant glycosylation is a universal feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer type. A common change in tumour cell glycosylation is an increase in α2,6 sialylation of N-glycans, a modification driven by the sialyltransferase ST6GAL1. ST6GAL1 is overexpressed in numerous cancer types, and sialylated glycans are fundamental for tumour growth, metastasis, immune evasion, and drug resistance, but the role of ST6GAL1 in prostate cancer is poorly understood. Here, we analyse matched cancer and normal tissue samples from 200 patients and verify that ST6GAL1 is upregulated in prostate cancer tissue. Using MALDI imaging mass spectrometry (MALDI-IMS), we identify larger branched α2,6 sialylated N-glycans that show specificity to prostate tumour tissue. We also monitored ST6GAL1 in plasma samples from >400 patients and reveal ST6GAL1 levels are significantly increased in the blood of men with prostate cancer. Using both in vitro and in vivo studies, we demonstrate that ST6GAL1 promotes prostate tumour growth and invasion. Our findings show ST6GAL1 introduces α2,6 sialylated N-glycans on prostate cancer cells and raise the possibility that prostate cancer cells can secrete active ST6GAL1 enzyme capable of remodelling glycans on the surface of other cells. Furthermore, we find α2,6 sialylated N-glycans expressed by prostate cancer cells can be targeted using the sialyltransferase inhibitor P-3FAX-Neu5Ac. Our study identifies an important role for ST6GAL1 and α2,6 sialylated N-glycans in prostate cancer progression and highlights the opportunity to inhibit abnormal sialylation for the development of new prostate cancer therapeutics

    Multibeam bathymetric surveys of submarine volcanoes and mega-pockmarks on the Chatham Rise, New Zealand

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Taylor & Francis for personal use, not for redistribution. The definitive version was published in New Zealand Journal of Geology and Geophysics 54 (2011): 329-339, doi:10.1080/00288306.2011.589860.Multibeam bathymetric surveys east of the South Island of New Zealand present images of submarine volcanoes and pockmarks west of Urry Knolls on the Chatham Rise, and evidence of submarine erosion on the southern margin of the Chatham Rise. Among numerous volcanic cones, diameters of the largest reach ~2000 m, and some stand as high as 400 m above the surrounding seafloor. The tops of most of the volcanic cones are flat, with hints of craters, and some with asymmetric shapes may show flank collapses. There are hints of both northeast-southwest and northwest-southeast alignments of volcanoes, but no associated faulting is apparent. Near and to the west of these volcanoes, huge pockmarks, some more than ~1 km in diameter, disrupt bottom topography. Pockmarks in this region seem to be confined to sea floor shallower than ~1200 m, but we see evidence of deeper pockmarks at water depths of up to 2100 m on profiles crossing the Bounty Trough. The pockmark field on the Chatham Rise seems to be bounded on the south by a trough near 1200 m depth; like others, we presume that contour currents have eroded the margin and created the trough.This research was supported by the National Science Foundation under grants EAR-0409564, EAR-0409609, and EAR-0409835.2012-08-3

    Slow slip source characterized by lithological and geometric heterogeneity

    Get PDF
    Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Expedition 372B/375 summary

    Get PDF
    Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expeditions 372 and 375 were undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough. We accomplished this goal by (1) coring and geophysical logging at four sites, including penetration of an active thrust fault (the Pāpaku fault) near the deformation front, the upper plate above the SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll seamount; and (2) installing borehole observatories in the Pāpaku fault and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372, and coring, wireline logging, and observatory installations were conducted during Expedition 375. Northern Hikurangi subduction margin SSEs recur every 1–2 y and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. In situ measurements and sampling of material from the sedimentary section and oceanic basement of the subducting plate reveal the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate to the trench, indicating that the shallow thrust fault (the Pāpaku fault) targeted during Expeditions 372 and 375 may also lie in the SSE rupture area and host a portion of the slip in these events. Hence, sampling and logging at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expeditions 372 and 375 were designed to address three fundamental scientific objectives: Characterize the state and composition of the incoming plate and shallow fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; Characterize material properties, thermal regime, and stress conditions in the upper plate directly above the SSE source region; and Install observatories in the Pāpaku fault near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface

    Slow slip source characterized by lithological and geometric heterogeneity

    Get PDF
    Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust
    corecore