25 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Physical and mechanical properties of composite boards based on wood fiber/palm kernel shell with different polyurethane composition

    No full text
    The oil palm industry has brought significant impacts to the economy, social, geographical as well as the environment. The decrement of wood resources and the concern of waste produced from palm oil production has become one of the major reasons in development of fiberboard products. A series of fiberboard samples have been fabricated and the effect of polyurethane adhesive (30, 40 and 50 %) into filler: wood fiber/oil palm kernel shell at ratio of 75/25 has been studied in terms of physical and mechanical properties. The results showed that flexural modulus, flexural strength, tensile modulus, and hardness were increased with the increase of polyurethane adhesive percentage. The effects were also explained in terms of porosity and surface morphology. The board met the JIS A 5905 for 5-type and can be classified as medium density fibreboard

    Adenovirus Fiber Shaft Contains a Trimerization Element That Supports Peptide Fusion for Targeted Gene Delivery

    No full text
    Adenoviral (Ad) vectors have been widely used in human gene therapy clinical trials. However, their application has frequently been restricted by the unfavorable expression of cell surface receptors critical for Ad infection. Infections by Ad2 and Ad5 are largely regulated by the elongated fiber protein that mediates its attachment to a cell surface receptor, coxsackie and adenovirus receptor (CAR). The fiber protein is a homotrimer consisting of an N-terminal tail, a long shaft, and a C-terminal knob region that is responsible for high-affinity receptor binding and Ad tropism. Consequently, the modification of the knob region, including peptide insertion and C-terminal fusion of ligands for cell surface receptors, has become a major research focus for targeting gene delivery. Such manipulation tends to disrupt fiber assembly since the knob region contains a stabilization element for fiber trimerization. We report here the identification of a novel trimerization element in the Ad fiber shaft. We demonstrate that fiber fragments containing the N-terminal tail and shaft repeats formed stable trimers that assembled onto Ad virions independently of the knob region. This fiber shaft trimerization element (FSTE) exhibited a capacity to support peptide fusion. We showed that Ad, modified with a chimeric protein by direct fusion of the FSTE with a growth factor ligand or a single-chain antibody, delivered a reporter gene selectively. Together, these results indicate that the shaft region of Ad fiber protein contains a trimerization element that allows ligand fusion, which potentially broadens the basis for Ad vector development

    A novel transgenic mouse model for immunological evaluation of carcinoembryonic antigen–based DNA minigene vaccines

    No full text
    A lack of relevant animal models has hampered preclinical screening and critical evaluation of the efficacy of human vaccines in vivo. Carcinoembryonic antigen–A2Kb (CEA–A2Kb) double transgenic mice provide a biologically relevant model for preclinical screening and critical evaluation of human CEA vaccine efficacy in vivo, particularly because such animals are peripherally tolerant of CEA. We established the utility of this model by demonstrating that an oral DNA minigene vaccine induces effective HLA-A2–restricted, CEA-specific antitumor CTL responses. This finding is supported by three lines of evidence: (a) an effective HLA-A2–restricted, CEA(691)-specific CTL response; (b) specific in vitro killing of CEA-A2Kb transduced MC-38 colon carcinoma cells; and (c) protective immunity induced in vaccinated mice against challenges of these tumor cells. Importantly, peripheral T cell tolerance against CEA in CEA-A2Kb double transgenic mice was broken by the CEA(691) (IMIGVLVGV) minigene vaccine. In conclusion, CEA-A2Kb double transgenic mice were demonstrated to be good candidates for in vivo testing of human CEA–based vaccines. This result suggests a potential for these vaccines in future human vaccine development. The feasibility of using nonmutated self-antigens as targets for therapeutic vaccinations was indicated, provided that such antigens are presented in an immunogenic context; that is, as a DNA minigene in a bacterial carrier system

    Intranasal administration of a synthetic lipopeptide without adjuvant induces systemic immune responses

    No full text
    Parenteral injection of a lipopeptide containing a human leucocyte antigen (HLA)-A*0201-restricted cytotoxic T-lymphocyte (CTL) epitope from the human cytomegalovirus (HCMV) immunodominant matrix protein pp65 efficiently induces systemic CTL responses in HLA-A*0201 transgenic mice. In this study, we demonstrate that intranasal (i.n.) administration of this lipopeptide, covalently linked to a universal T helper (Th) epitope (PADRE), also induces potent systemic CTL responses. Immune responses were substantially reduced when the unlipidated peptide analogue was used (P<0·01). The induced CTL were CD8(+), major histocompatibility complex (MHC) class I-restricted and CMV specific. Moreover, i.n. administration of this lipidated peptide elicited both systemic and local mucosal CD4(+) T-cell proliferative responses, as well as antigen-specific delayed type hypersensitivity (DTH) immune responses. In contrast, mice receiving the unlipidated peptide analogue developed substantially reduced Th or DTH responses (P<0·05). These results highlight the usefulness and potential of lipopeptides delivered via mucosal routes as painless, safe, and non-invasive vaccines
    corecore