3,096 research outputs found
On the chemical equilibration of strangeness-exchange reaction in heavy-ion collisions
The strangeness-exchange reaction pi + Y -> K- + N is shown to be the
dynamical origin of chemical equilibration for K- production in heavy-ion
collisions up to beam energies of 10 A GeV. The hyperons occurring in this
process are produced associately with K+ in baryon-baryon and meson-baryon
interactions. This connection is demonstrated by the ratio K-/K+ which does not
vary with centrality and shows a linear correlation with the yield of pions per
participant. At incident energies above AGS this correlation no longer holds
due to the change in the production mechanism of kaons.Comment: 9 pages, 4 figure
Fast computation of the Kohn-Sham susceptibility of large systems
For hybrid systems, such as molecules grafted onto solid surfaces, the
calculation of linear response in time dependent density functional theory is
slowed down by the need to calculate, in N^4 operations, the susceptibility of
N non interacting Kohn-Sham reference electrons. We show how this
susceptibility can be calculated N times faster within finite precision. By
itself or in combination with previous methods, this should facilitate the
calculation of TDDFT response and optical spectra of hybrid systems.Comment: submitted 25/1/200
Integrable multiparametric quantum spin chains
Using Reshetikhin's construction for multiparametric quantum algebras we
obtain the associated multiparametric quantum spin chains. We show that under
certain restrictions these models can be mapped to quantum spin chains with
twisted boundary conditions. We illustrate how this general formalism applies
to construct multiparametric versions of the supersymmetric t-J and U models.Comment: 17 pages, RevTe
A planar extrapolation of the correlation problem that permits pairing
It was observed previously that an SU(N) extension of the Hubbard model is
dominated, at large N, by planar diagrams in the sense of 't Hooft, but the
possibility of superconducting pairing got lost in this extrapolation. To allow
for this possibility, we replace SU(N) by U(N,q), the unitary group in a vector
space of quaternions. At the level of the free energy, the difference between
the SU(N)and U(N,q) extrapolations appears only to first nonleading order in N.Comment: 8 pages, 2 figure
Local Communication Protocols for Learning Complex Swarm Behaviors with Deep Reinforcement Learning
Swarm systems constitute a challenging problem for reinforcement learning
(RL) as the algorithm needs to learn decentralized control policies that can
cope with limited local sensing and communication abilities of the agents.
While it is often difficult to directly define the behavior of the agents,
simple communication protocols can be defined more easily using prior knowledge
about the given task. In this paper, we propose a number of simple
communication protocols that can be exploited by deep reinforcement learning to
find decentralized control policies in a multi-robot swarm environment. The
protocols are based on histograms that encode the local neighborhood relations
of the agents and can also transmit task-specific information, such as the
shortest distance and direction to a desired target. In our framework, we use
an adaptation of Trust Region Policy Optimization to learn complex
collaborative tasks, such as formation building and building a communication
link. We evaluate our findings in a simulated 2D-physics environment, and
compare the implications of different communication protocols.Comment: 13 pages, 4 figures, version 2, accepted at ANTS 201
Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition
We investigate correlations between orthogonally polarized cavity modes of a
bimodal micropillar laser with a single layer of self-assembled quantum dots in
the active region. While one emission mode of the microlaser demonstrates a
characteristic s-shaped input-output curve, the output intensity of the second
mode saturates and even decreases with increasing injection current above
threshold. Measuring the photon auto-correlation function g^{(2)}(\tau) of the
light emission confirms the onset of lasing in the first mode with g^{(2)}(0)
approaching unity above threshold. In contrast, strong photon bunching
associated with super-thermal values of g^{(2)}(0) is detected for the other
mode for currents above threshold. This behavior is attributed to gain
competition of the two modes induced by the common gain material, which is
confirmed by photon crosscorrelation measurements revealing a clear
anti-correlation between emission events of the two modes. The experimental
studies are in excellent qualitative agreement with theoretical studies based
on a microscopic semiconductor theory, which we extend to the case of two modes
interacting with the common gain medium. Moreover, we treat the problem by an
extended birth-death model for two interacting modes, which reveals, that the
photon probability distribution of each mode has a double peak structure,
indicating switching behavior of the modes for the pump rates around threshold.Comment: 11 pages, 5 figures, submitted to Phys. Rev.
Chemical composition and nymphicidal effect of essential oils from fruits of four Piper species (Piperaceae) against Tibraca limbativentris nymphs (Hemiptera: Pentatomidae).
This study aimed to verify the nymphicidal action of essential oils from fruits of 4 Piperaceae species against T. limbativentris nymphs. Fruits were collected in 3 brazilian states (P malacophyllum and P. marginatum: Pará, P. aduncum: Mato Grosso and P. gaudichaudinaum: Paraná)
An improved SPH scheme for cosmological simulations
We present an implementation of smoothed particle hydrodynamics (SPH) with
improved accuracy for simulations of galaxies and the large-scale structure. In
particular, we combine, implement, modify and test a vast majority of SPH
improvement techniques in the latest instalment of the GADGET code. We use the
Wendland kernel functions, a particle wake-up time-step limiting mechanism and
a time-dependent scheme for artificial viscosity, which includes a high-order
gradient computation and shear flow limiter. Additionally, we include a novel
prescription for time-dependent artificial conduction, which corrects for
gravitationally induced pressure gradients and largely improves the SPH
performance in capturing the development of gas-dynamical instabilities. We
extensively test our new implementation in a wide range of hydrodynamical
standard tests including weak and strong shocks as well as shear flows,
turbulent spectra, gas mixing, hydrostatic equilibria and self-gravitating gas
clouds. We jointly employ all modifications; however, when necessary we study
the performance of individual code modules. We approximate hydrodynamical
states more accurately and with significantly less noise than standard SPH.
Furthermore, the new implementation promotes the mixing of entropy between
different fluid phases, also within cosmological simulations. Finally, we study
the performance of the hydrodynamical solver in the context of radiative galaxy
formation and non-radiative galaxy cluster formation. We find galactic disks to
be colder, thinner and more extended and our results on galaxy clusters show
entropy cores instead of steadily declining entropy profiles. In summary, we
demonstrate that our improved SPH implementation overcomes most of the
undesirable limitations of standard SPH, thus becoming the core of an efficient
code for large cosmological simulations.Comment: 21 figures, 2 tables, accepted to MNRA
Stochastic Model for the Motion of a Particle on an Inclined Rough Plane and the Onset of Viscous Friction
Experiments on the motion of a particle on an inclined rough plane have
yielded some surprising results. For example, it was found that the frictional
force acting on the ball is viscous, {\it i.e.} proportional to the velocity
rather than the expected square of the velocity. It was also found that, for a
given inclination of the plane, the velocity of the ball scales as a power of
its radius. We present here a one dimensional stochastic model based on the
microscopic equations of motion of the ball, which exhibits the same behaviour
as the experiments. This model yields a mechanism for the origins of the
viscous friction force and the scaling of the velocity with the radius. It also
reproduces other aspects of the phase diagram of the motion which we will
discuss.Comment: 19 pages, latex, 11 postscript figures in separate uuencoded fil
- …