1,309 research outputs found

    An isoperimetric problem for leaky loops and related mean-chord inequalities

    Full text link
    We consider a class of Hamiltonians in L2(R2)L^2(\R^2) with attractive interaction supported by piecewise C2C^2 smooth loops Γ\Gamma of a fixed length LL, formally given by −Δ−αδ(x−Γ)-\Delta-\alpha\delta(x-\Gamma) with α>0\alpha>0. It is shown that the ground state of this operator is locally maximized by a circular Γ\Gamma. We also conjecture that this property holds globally and show that the problem is related to an interesting family of geometric inequalities concerning mean values of chords of Γ\Gamma.Comment: LaTeX, 16 page

    Scattering by local deformations of a straight leaky wire

    Full text link
    We consider a model of a leaky quantum wire with the Hamiltonian −Δ−αδ(x−Γ)-\Delta -\alpha \delta(x-\Gamma) in L2(R2)L^2(\R^2), where Γ\Gamma is a compact deformation of a straight line. The existence of wave operators is proven and the S-matrix is found for the negative part of the spectrum. Moreover, we conjecture that the scattering at negative energies becomes asymptotically purely one-dimensional, being determined by the local geometry in the leading order, if Γ\Gamma is a smooth curve and α→∞\alpha \to\infty.Comment: Latex2e, 15 page

    Schroedinger operators with singular interactions: a model of tunneling resonances

    Full text link
    We discuss a generalized Schr\"odinger operator in L2(Rd),d=2,3L^2(\mathbb{R}^d), d=2,3, with an attractive singular interaction supported by a (d−1)(d-1)-dimensional hyperplane and a finite family of points. It can be regarded as a model of a leaky quantum wire and a family of quantum dots if d=2d=2, or surface waves in presence of a finite number of impurities if d=3d=3. We analyze the discrete spectrum, and furthermore, we show that the resonance problem in this setting can be explicitly solved; by Birman-Schwinger method it is cast into a form similar to the Friedrichs model.Comment: LaTeX2e, 34 page

    Bound states in point-interaction star-graphs

    Get PDF
    We discuss the discrete spectrum of the Hamiltonian describing a two-dimensional quantum particle interacting with an infinite family of point interactions. We suppose that the latter are arranged into a star-shaped graph with N arms and a fixed spacing between the interaction sites. We prove that the essential spectrum of this system is the same as that of the infinite straight "polymer", but in addition there are isolated eigenvalues unless N=2 and the graph is a straight line. We also show that the system has many strongly bound states if at least one of the angles between the star arms is small enough. Examples of eigenfunctions and eigenvalues are computed numerically.Comment: 17 pages, LaTeX 2e with 9 eps figure

    A single-mode quantum transport in serial-structure geometric scatterers

    Full text link
    We study transport in quantum systems consisting of a finite array of N identical single-channel scatterers. A general expression of the S matrix in terms of the individual-element data obtained recently for potential scattering is rederived in this wider context. It shows in particular how the band spectrum of the infinite periodic system arises in the limit N→∞N\to\infty. We illustrate the result on two kinds of examples. The first are serial graphs obtained by chaining loops or T-junctions. A detailed discussion is presented for a finite-periodic "comb"; we show how the resonance poles can be computed within the Krein formula approach. Another example concerns geometric scatterers where the individual element consists of a surface with a pair of leads; we show that apart of the resonances coming from the decoupled-surface eigenvalues such scatterers exhibit the high-energy behavior typical for the delta' interaction for the physically interesting couplings.Comment: 36 pages, a LaTeX source file with 2 TeX drawings, 3 ps and 3 jpeg figures attache

    Schrödinger operators with δ and δ′-potentials supported on hypersurfaces

    Get PDF
    Self-adjoint Schrödinger operators with δ and δ′-potentials supported on a smooth compact hypersurface are defined explicitly via boundary conditions. The spectral properties of these operators are investigated, regularity results on the functions in their domains are obtained, and analogues of the Birman–Schwinger principle and a variant of Krein’s formula are shown. Furthermore, Schatten–von Neumann type estimates for the differences of the powers of the resolvents of the Schrödinger operators with δ and δ′-potentials, and the Schrödinger operator without a singular interaction are proved. An immediate consequence of these estimates is the existence and completeness of the wave operators of the corresponding scattering systems, as well as the unitary equivalence of the absolutely continuous parts of the singularly perturbed and unperturbed Schrödinger operators. In the proofs of our main theorems we make use of abstract methods from extension theory of symmetric operators, some algebraic considerations and results on elliptic regularity

    Spectra of soft ring graphs

    Full text link
    We discuss of a ring-shaped soft quantum wire modeled by δ\delta interaction supported by the ring of a generally nonconstant coupling strength. We derive condition which determines the discrete spectrum of such systems, and analyze the dependence of eigenvalues and eigenfunctions on the coupling and ring geometry. In particular, we illustrate that a random component in the coupling leads to a localization. The discrete spectrum is investigated also in the situation when the ring is placed into a homogeneous magnetic field or threaded by an Aharonov-Bohm flux and the system exhibits persistent currents.Comment: LaTeX 2e, 17 pages, with 10 ps figure

    Multiple bound states in scissor-shaped waveguides

    Full text link
    We study bound states of the two-dimensional Helmholtz equations with Dirichlet boundary conditions in an open geometry given by two straight leads of the same width which cross at an angle θ\theta. Such a four-terminal junction with a tunable θ\theta can realized experimentally if a right-angle structure is filled by a ferrite. It is known that for θ=90o\theta=90^o there is one proper bound state and one eigenvalue embedded in the continuum. We show that the number of eigenvalues becomes larger with increasing asymmetry and the bound-state energies are increasing as functions of θ\theta in the interval (0,90o)(0,90^o). Moreover, states which are sufficiently strongly bent exist in pairs with a small energy difference and opposite parities. Finally, we discuss how with increasing θ\theta the bound states transform into the quasi-bound states with a complex wave vector.Comment: 6 pages, 6 figure

    Band spectra of rectangular graph superlattices

    Full text link
    We consider rectangular graph superlattices of sides l1, l2 with the wavefunction coupling at the junctions either of the delta type, when they are continuous and the sum of their derivatives is proportional to the common value at the junction with a coupling constant alpha, or the "delta-prime-S" type with the roles of functions and derivatives reversed; the latter corresponds to the situations where the junctions are realized by complicated geometric scatterers. We show that the band spectra have a hidden fractal structure with respect to the ratio theta := l1/l2. If the latter is an irrational badly approximable by rationals, delta lattices have no gaps in the weak-coupling case. We show that there is a quantization for the asymptotic critical values of alpha at which new gap series open, and explain it in terms of number-theoretic properties of theta. We also show how the irregularity is manifested in terms of Fermi-surface dependence on energy, and possible localization properties under influence of an external electric field. KEYWORDS: Schroedinger operators, graphs, band spectra, fractals, quasiperiodic systems, number-theoretic properties, contact interactions, delta coupling, delta-prime coupling.Comment: 16 pages, LaTe

    Transport and dynamics on open quantum graphs

    Full text link
    We study the classical limit of quantum mechanics on graphs by introducing a Wigner function for graphs. The classical dynamics is compared to the quantum dynamics obtained from the propagator. In particular we consider extended open graphs whose classical dynamics generate a diffusion process. The transport properties of the classical system are revealed in the scattering resonances and in the time evolution of the quantum system.Comment: 42 pages, 13 figures, submitted to PR
    • …
    corecore