We discuss the discrete spectrum of the Hamiltonian describing a
two-dimensional quantum particle interacting with an infinite family of point
interactions. We suppose that the latter are arranged into a star-shaped graph
with N arms and a fixed spacing between the interaction sites. We prove that
the essential spectrum of this system is the same as that of the infinite
straight "polymer", but in addition there are isolated eigenvalues unless N=2
and the graph is a straight line. We also show that the system has many
strongly bound states if at least one of the angles between the star arms is
small enough. Examples of eigenfunctions and eigenvalues are computed
numerically.Comment: 17 pages, LaTeX 2e with 9 eps figure