80 research outputs found

    Characterization of a nonvirulent variant of lymphocytic choriomeningitis virus

    Full text link
    A cold-adapted, nonvirulent variant of the Armstrong strain of lymphocytic choriomeningitis virus was isolated from infected L929 cells maintained at 25° C. This variant, designated P17, was capable of replicating in the central nervous system of mice without causing disease and conferring immunity to back challenge with the parental strain.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41689/1/705_2005_Article_BF01320786.pd

    Monitoring increases in fracture connectivity during hydraulic stimulations from temporal variations in shear wave splitting polarization

    No full text
    Hydraulic overpressure can induce fractures and increase permeability in a range of geological settings, including volcanological, glacial and petroleum reservoirs. Here we consider an example of induced hydraulic fracture stimulation in a tight-gas sandstone. Successful exploitation of tight-gas reservoirs requires fracture networks, either naturally occurring, or generated through hydraulic stimulation. The study of seismic anisotropy provides a means to infer properties of fracture networks, such as the dominant orientation of fracture sets and fracture compliances. Shear wave splitting from microseismic data acquired during hydraulic fracture stimulation allows us to not only estimate anisotropy and fracture properties, but also to monitor their evolution through time. Here, we analyse shear wave splitting using microseismic events recorded during a multistage hydraulic fracture stimulation in a tight-gas sandstone reservoir. A substantial rotation in the dominant fast polarization direction (ψ) is observed between the events of stage 1 and those from later stages. Although large changes in ψ have often been linked to stress-induced changes in crack orientation, here we argue that it can better be explained by a smaller fracture rotation coupled with an increase in the ratio of normal to tangential compliance (ZN/ZT) from 0.3 to 0.6. ZN/ZT is sensitive to elements of the internal architecture of the fracture, as well as fracture connectivity and permeability. Thus, monitoring ZN/ZT with shear wave splitting can potentially allow us to remotely detect changes in permeability caused by hydraulic stimulation in a range of geological settings

    The DEAD-box RNA Helicase DDX6 is Required for Efficient Encapsidation of a Retroviral Genome

    Get PDF
    Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles. These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the site of viral assembly for its function as a catalyst in retroviral RNA packaging

    Murine cytomegalovirus infects spermatogenic cells.

    No full text
    Murine cytomegalovirus replicated in reproductive tissue of male mice infected with the virus. We examined three strains of mice latently infected by injection at birth with 100 plaque-forming units of the virus. As adults, these mice contained within their testes 4--6 viral genomic equivalents per 100 cells, as tested by hybridization between mouse DNA and cytomegalovirus DNA. Acutely infected male adult CBA mice homozygous for the nude gene (athymic: nude/nude) produced infectious virus in their testes, the amounts of which varied according to the animal's age at the time of infection. Heterozygous (nude/+) litter mates contained significantly less virus than nude/nude mice. At the peak of virus replication hybridization between virus DNA and mouse DNA indicated the presence of 3.3 viral genome equivalents per testicular cell. Both in situ hybridization studies and phenol emulsion reassociation of virus DNA to DNA from purified spermatozoa localized this viral DNA to immature and mature sperm cells. Hence, murine cytomegalovirus can be harbored in testes during both acute and latent infections and can replicate in male germ-line cells

    Murine cytomegalovirus infects spermatogenic cells.

    No full text
    • …
    corecore