88 research outputs found

    Unbounded randomness certification using sequences of measurements

    Get PDF
    Unpredictability, or randomness, of the outcomes of measurements made on an entangled state can be certified provided that the statistics violate a Bell inequality. In the standard Bell scenario where each party performs a single measurement on its share of the system, only a finite amount of randomness, of at most 4log2d4 log_2 d bits, can be certified from a pair of entangled particles of dimension dd. Our work shows that this fundamental limitation can be overcome using sequences of (nonprojective) measurements on the same system. More precisely, we prove that one can certify any amount of random bits from a pair of qubits in a pure state as the resource, even if it is arbitrarily weakly entangled. In addition, this certification is achieved by near-maximal violation of a particular Bell inequality for each measurement in the sequence.Comment: 4 + 5 pages (1 + 3 images), published versio

    On the Topological Phase around Conical Intersections with Tamm–Dancoff Linear-Response Time-Dependent Density Functional Theory

    Get PDF
    Regions of nuclear-configuration space away from the Franck–Condon geometry can prove problematic for some electronic structure methods, given the propensity of such regions to possess conical intersections, i.e., (highly connected) points of degeneracy between potential energy surfaces. With the likelihood (perhaps even inevitability) for nonadiabatic dynamics simulations to explore molecular geometries in close proximity to conical intersections, it is vital that the performance of electronic structure methods is routinely examined in this context. In a recent paper [Taylor, J. T. J. Chem. Phys. 2023, 159, 214115.], the ability of linear-response time-dependent density functional theory within the adiabatic approximation (AA LR-TDDFT) to provide a proper description of conical intersections, in terms of their topology and topography, was investigated, with particular attention paid to conical intersections between two excited electronic states. For the same prototypical molecules, protonated formaldimine and pyrazine, we herein consider whether AA LR-TDDFT can correctly reproduce the topological phase accumulated by the adiabatic electronic wave function upon traversing a closed path around an excited-to-excited state conical intersection despite not using the appropriate quadratic-response nonadiabatic coupling vectors. Equally, we probe the ability of the ground-to-excited state intersection ring exhibited by AA LR-TDDFT in protonated formaldimine to give rise to a similar topological phase in spite of its incorrect dimensionality

    On the description of conical intersections between excited electronic states with LR-TDDFT and ADC(2).

    Get PDF
    Conical intersections constitute the conceptual bedrock of our working understanding of ultrafast, nonadiabatic processes within photochemistry (and photophysics). Accurate calculation of potential energy surfaces within the vicinity of conical intersections, however, still poses a serious challenge to many popular electronic structure methods. Multiple works have reported on the deficiency of methods like linear-response time-dependent density functional theory within the adiabatic approximation (AA LR-TDDFT) or algebraic diagrammatic construction to second-order [ADC(2)]-approaches often used in excited-state molecular dynamics simulations-to describe conical intersections between the ground and excited electronic states. In the present study, we focus our attention on conical intersections between excited electronic states and probe the ability of AA LR-TDDFT and ADC(2) to describe their topology and topography, using protonated formaldimine and pyrazine as two exemplar molecules. We also take the opportunity to revisit the performance of these methods in describing conical intersections involving the ground electronic state in protonated formaldimine-highlighting in particular how the intersection ring exhibited by AA LR-TDDFT can be perceived either as a (near-to-linear) seam of intersection or two interpenetrating cones, depending on the magnitude of molecular distortions within the branching space. [Abstract copyright: © 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

    Sub-femtosecond stark control of molecular photoexcitation with near single-cycle pulses.

    Get PDF
    Electric fields can tailor molecular potential energy surfaces by interaction with the electronic state-dependent molecular dipole moment. Recent developments in optics have enabled the creation of ultra-short few-cycle optical pulses with precise control of the carrier envelope phase (CEP) that determines the offset of the maxima in the field and the pulse envelope. This opens news ways of controlling ultrafast molecular dynamics by exploiting the CEP. In this work, we show that the photoabsorption efficiency of oriented H2CSO (sulfine) can be controlled by tuning the CEP. We further show that this control emanates from a resonance condition related to Stark shifting of the electronic energy levels

    Real Time Control of EC Heating & Current Drive Systems on TCV

    Get PDF
    The ability to control, in real time, the electron cyclotron heating & current drive systems for the control of MHD instabilities is particularly important for large tokamaks operating at high performance. Several algorithms have been developed and tested on TCV to explore possible control techniques, first in simple experiments to control the plasma current and elongation and subsequently in experiments to control the sawtooth instability and profile parameters. A summary of these experiments are presented in this paper together with the application of the break-in-slope technique as a possible real time calculation of the location of EC deposition

    Seasonal variations in air concentrations of 27 organochlorine pesticides (OCPs) and 25 current-use pesticides (CUPs) across three agricultural areas of South Africa

    Get PDF
    For decades pesticides have been used in agriculture, however, the occurrence of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) is poorly understood in Africa. This study investigates air concentrations of OCPs and CUPs in three South African agricultural areas, their spatial/seasonal variations and mixture profiles. Between 2017 and 2018, 54 polyurethane foam-disks passive air-samplers (PUF-PAS) were positioned in three agricultural areas of the Western Cape, producing mainly apples, table grapes and wheat. Within areas, 25 CUPs were measured at two sites (farm and village), and 27 OCPs at one site (farm). Kruskal-Wallis tests investigated area differences in OCPs concentrations, and linear mixed-effect models studied differences in CUPs concentrations between areas, sites and sampling rounds. In total, 20 OCPs and 16 CUPs were detected. A median of 16 OCPs and 10 CUPs were detected per sample, making a total of 11 OCPs and 24 CUPs combinations. Eight OCPs (trans-chlordane, o,p'-/p,p'-dichlorodiphenyldichloroethylene (DDE)/dichlorodiphenyltrichloroethane (DDT), endosulfan sulfate, γ-hexachlorocyclohexane and mirex) and two CUPs (carbaryl and chlorpyrifos) were quantified in all samples. p,p'-DDE (median 0.14 ng/m(3)) and chlorpyrifos (median 0.70 ng/m(3)) showed the highest concentrations throughout the study. Several OCPs and CUPs showed different concentrations between areas and seasons, although CUPs concentrations did not differ between sites. OCPs ratios suggest ongoing chlordane use in the region, while DDT and endosulfan contamination result from past-use. Our study revealed spatial and seasonal variations of different OCPs and CUPs combinations detected in air. Further studies are needed to investigate the potential cumulative or synergistic risks of the detected pesticides

    Unbounded randomness certification using sequences of measurements

    Get PDF
    Unpredictability, or randomness, of the outcomes of measurements made on an entangled state can be certified provided that the statistics violate a Bell inequality. In the standard Bell scenario where each party performs a single measurement on its share of the system, only a finite amount of randomness, of at most 4logd bits, can be certified from a pair of entangled particles of dimension d. Our work shows that this fundamental limitation can be overcome using sequences of (nonprojective) measurements on the same system. More precisely, we prove that one can certify any amount of random bits from a pair of qubits in a pure state as the resource, even if it is arbitrarily weakly entangled. In addition, this certification is achieved by near-maximal violation of a particular Bell inequality for each measurement in the sequence

    Multiple EC power deposition locations tracking by break-in-slope analysis in TCV plasmas

    Get PDF
    Modulation of the amplitude of externally injected electron cyclotron (EC) power is a frequent method used to determine the radial power deposition profile in fusion plasmas. There are many tools to analyze the plasma response to the power modulations under quasi-stationary conditions. This paper focuses on the unique ability of the break-in-slope (BIS) method to retrieve a quasi-instantaneous estimate of the power deposition profile at each power step in the modulation, an outcome particularly relevant to track the power deposition location under non-stationary conditions. Here, the BIS analysis method is applied to the signals of a fast and high radial resolution wire-chamber soft x-ray camera in the Tokamak a Configuration Variable (TCV) where the plasma magnetic configuration and thus the EC resonance location are varied during the plasma discharge. As a step to validate this technique before real-time control experiments, the time-varying EC power deposition location of a single beam is successfully monitored by off-line BIS analysis. Simultaneous tracking of deposition locations of two EC beams gives promising results
    corecore