175 research outputs found

    The Mt John University Observatory Search For Earth-mass Planets In The Habitable Zone Of Alpha Centauri

    Full text link
    The "holy grail" in planet hunting is the detection of an Earth-analog: a planet with similar mass as the Earth and an orbit inside the habitable zone. If we can find such an Earth-analog around one of the stars in the immediate solar neighborhood, we could potentially even study it in such great detail to address the question of its potential habitability. Several groups have focused their planet detection efforts on the nearest stars. Our team is currently performing an intensive observing campaign on the alpha Centauri system using the Hercules spectrograph at the 1-m McLellan telescope at Mt John University Observatory (MJUO) in New Zealand. The goal of our project is to obtain such a large number of radial velocity measurements with sufficiently high temporal sampling to become sensitive to signals of Earth-mass planets in the habitable zones of the two stars in this binary system. Over the past years, we have collected more than 45,000 spectra for both stars combined. These data are currently processed by an advanced version of our radial velocity reduction pipeline, which eliminates the effect of spectral cross-contamination. Here we present simulations of the expected detection sensitivity to low-mass planets in the habitable zone by the Hercules program for various noise levels. We also discuss our expected sensitivity to the purported Earth-mass planet in an 3.24-d orbit announced by Dumusque et al.~(2012).Comment: 16 pages, 7 figures, accepted for publication in the International Journal of Astrobiolog

    Structure and Evolution of Nearby Stars with Planets. I. Short-Period Systems

    Full text link
    Using the Yale stellar evolution code, we have calculated theoretical models for nearby stars with planetary-mass companions in short-period nearly circular orbits: 51 Pegasi, Tau Bootis, Upsilon Andromedae, Rho Cancri, and Rho Coronae Borealis. We present tables listing key stellar parameters such as mass, radius, age, and size of the convective envelope as a function of the observable parameters (luminosity, effective temperature, and metallicity), as well as the unknown helium fraction. For each star we construct best models based on recently published spectroscopic data and the present understanding of galactic chemical evolution. We discuss our results in the context of planet formation theory, and, in particular, tidal dissipation effects and stellar metallicity enhancements.Comment: 48 pages including 13 tables and 5 figures, to appear in Ap

    Improving the Prospects for Detecting Extrasolar Planets in Gravitational Microlensing in 2002

    Full text link
    Gravitational microlensing events of high magnification have been shown to be promising targets for detecting extrasolar planets. However, only a few events of high magnification have been found using conventional survey techniques. Here we demonstrate that high magnification events can be readily found in microlensing surveys using a strategy that combines high frequency sampling of target fields with online difference imaging analysis. We present 10 microlensing events with peak magnifications greater than 40 that were detected in real-time towards the Galactic Bulge during 2001 by MOA. We show that Earth mass planets can be detected in future events such as these through intensive follow-up observations around the event peaks. We report this result with urgency as a similar number of such events are expected in 2002.Comment: 11 pages, 3 embedded ps figures including 2 colour, revised version accepted by MNRA

    MOA 2003-BLG-37: A Bulge Jerk-Parallax Microlens Degeneracy

    Full text link
    We analyze the Galactic bulge microlensing event MOA-2003-BLG-37. Although the Einstein timescale is relatively short, t_e=43 days, the lightcurve displays deviations consistent with parallax effects due to the Earth's accelerated motion. We show that the chi^2 surface has four distinct local minima that are induced by the ``jerk-parallax'' degeneracy, with pairs of solutions having projected Einstein radii, \tilde r_e = 1.76 AU and 1.28 AU, respectively. This is the second event displaying such a degeneracy and the first toward the Galactic bulge. For both events, the jerk-parallax formalism accurately describes the offsets between the different solutions, giving hope that when extra solutions exist in future events, they can easily be found. However, the morphologies of the chi^2 surfaces for the two events are quite different, implying that much remains to be understood about this degeneracy.Comment: 19 pages, 3 figures, 1 table, ApJ, in press, 1 July 200

    Study of variable stars in the MOA data base: long-period red variables in the Large Magellanic Cloud

    Get PDF
    One hundred and forty six long-period red variable stars in the Large Magellanic Cloud (LMC) from the three year MOA project database were analysed. A careful periodic analysis was performed on these stars and a catalogue of their magnitudes, colours, periods and amplitudes is presented. We convert our blue and red magnitudes to KK band values using 19 oxygen-rich stars. A group of red short-period stars separated from the Mira sequence has been found on a (log P, K) diagram. They are located at the short period side of the Mira sequence consistent with the work of Wood and Sebo (1996). There are two interpretations for such stars; a difference in pulsation mode or a difference in chemical composition. We investigated the properties of these stars together with their colour, amplitude and periodicity. We conclude that they have small amplitudes and less regular variability. They are likely to be higher mode pulsators. A large scatter has been also found on the long period side of the (log P, K) diagram. This is possibly a systematic spread given that the blue band of our photometric system covers both standard B and V bands and affects carbon-rich stars.Comment: 19 pages, 19 figures, accepted for publication in MNRA

    Discovery of the optical counterpart and early optical observations of GRB990712

    Get PDF
    We present the discovery observations of the optical counterpart of the gamma-ray burster GRB990712 taken 4.16 hours after the outburst and discuss its light curve observed in the V, R and I bands during the first ~35 days after the outburst. The observed light curves were fitted with a power-law decay for the optical transient (OT), plus an additional component which was treated in two different ways. First, the additional component was assumed to be an underlying galaxy of constant brightness. The resulting slope of the decay is 0.97+/-0.05 and the magnitudes of the underlying galaxy are: V = 22.3 +/- 0.05, R = 21.75 +/- 0.05 and I = 21.35 +/- 0.05. Second, the additional component was assumed to be a galaxy plus an underlying supernova with a time-variable brightness identical to that of GRB980425, appropriately scaled to the redshift of GRB990712. The resulting slope of the decay is similar, but the goodness-of-fit is worse which would imply that either this GRB is not associated with an underlying supernova or the underlying supernova is much fainter than the supernova associated with GRB980425. The galaxy in this case is fainter: V = 22.7 +/- 0.05, R = 22.25 +/- 0.05 and I = 22.15 +/- 0.05; and the OT plus the underlying supernova at a given time is brighter. Measurements of the brightnesses of the OT and the galaxy by late-time HST observation and ground-based observations can thus assess the presence of an underlying supernova.Comment: To appear in Ap

    On Planetary Companions to the MACHO-98-BLG-35 Microlens Star

    Get PDF
    We present observations of microlensing event MACHO-98-BLG-35 which reached a peak magnification factor of almost 80. These observations by the Microlensing Planet Search (MPS) and the MOA Collaborations place strong constraints on the possible planetary system of the lens star and show intriguing evidence for a low mass planet with a mass fraction 4×10−5≀ϔ≀2×10−44\times 10^{-5} \leq \epsilon \leq 2\times 10^{-4}. A giant planet with Ï”=10−3\epsilon = 10^{-3} is excluded from 95% of the region between 0.4 and 2.5 RER_E from the lens star, where RER_E is the Einstein ring radius of the lens. This exclusion region is more extensive than the generic "lensing zone" which is 0.6−1.6RE0.6 - 1.6 R_E. For smaller mass planets, we can exclude 57% of the "lensing zone" for Ï”=10−4\epsilon = 10^{-4} and 14% of the lensing zone for Ï”=10−5\epsilon = 10^{-5}. The mass fraction Ï”=10−5\epsilon = 10^{-5} corresponds to an Earth mass planet for a lensing star of mass \sim 0.3 \msun. A number of similar events will provide statistically significant constraints on the prevalence of Earth mass planets. In order to put our limits in more familiar terms, we have compared our results to those expected for a Solar System clone averaging over possible lens system distances and orientations. We find that such a system is ruled out at the 90% confidence level. A copy of the Solar System with Jupiter replaced by a second Saturn mass planet can be ruled out at 70% confidence. Our low mass planetary signal (few Earth masses to Neptune mass) is significant at the 4.5σ4.5\sigma confidence level. If this planetary interpretation is correct, the MACHO-98-BLG-35 lens system constitutes the first detection of a low mass planet orbiting an ordinary star without gas giant planets.Comment: ApJ, April 1, 2000; 27 pages including 8 color postscript figure

    The conjectured S-type retrograde planet in Μ Octantis: more evidence including four years of iodine-cell radial velocities

    Get PDF
    We report 1212 radial-velocity (RV) measurements obtained in the years 2009–2013 using an iodine cell for the spectroscopic binary Îœ Octantis (K1 III/IV). This system (abin ∌ 2.6 au, P ∌ 1050 d) is conjectured to have a Jovian planet with a semimajor axis half that of the binary host. The extreme geometry only permits long-term stability if the planet is in a retrograde orbit. Whilst the reality of the planet (P ∌ 415 d) remains uncertain, other scenarios (stellar variability or apsidal motion caused by a yet unobserved third star) continue to appear substantially less credible based on cross-correlation function bisectors, line-depth ratios and many other independent details. If this evidence is validated but the planet is disproved, the claims of other planets using RVs will be seriously challenged. We also describe a significant revision to the previously published RVs and the full set of 1437 RVs now encompasses nearly 13 yr. The sensitive orbital dynamics allow us to constrain the 3D architecture with a broad prior probability distribution on the mutual inclination, which with posterior samples obtained from an N-body Markov chain Monte Carlo is found to be 152. ◩ 5±0.7 0.6. None of these samples are dynamically stable beyond 106 yr. However, a grid search around the best-fitting solution finds a region that has many models stable for 107 yr, and includes one model within 1σ that is stable for at least 108 yr. The planet’s exceptional nature demands robust independent verification and makes the theoretical understanding of its formation a worthy challenge
    • 

    corecore