38 research outputs found

    A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)

    No full text
    Employing the fact that the geometry of the n-qubit (n≥2) Pauli group is embodied in the structure of the symplectic polar space W(2n−1,2) and using properties of the Lagrangian Grassmannian LGr(n,2n) defined over the smallest Galois field, it is demonstrated that there exists a bijection between the set of maximum sets of mutually commuting elements of the n-qubit Pauli group and a certain subset of elements of the 2ⁿ⁻¹-qubit Pauli group. In order to reveal finer traits of this correspondence, the cases n=3 (also addressed recently by Lévay, Planat and Saniga [J. High Energy Phys. 2013 (2013), no. 9, 037, 35 pages]) and n=4 are discussed in detail. As an apt application of our findings, we use the stratification of the ambient projective space PG(2n−1,2) of the 2ⁿ⁻¹-qubit Pauli group in terms of G-orbits, where G≡SL(2,2)×SL(2,2)×⋯×SL(2,2)⋊Sn, to decompose π(LGr(n,2n)) into non-equivalent orbits. This leads to a partition of LGr(n,2n) into distinguished classes that can be labeled by elements of the above-mentioned Pauli groups

    Moduli of Abelian varieties, Vinberg theta-groups, and free resolutions

    Full text link
    We present a systematic approach to studying the geometric aspects of Vinberg theta-representations. The main idea is to use the Borel-Weil construction for representations of reductive groups as sections of homogeneous bundles on homogeneous spaces, and then to study degeneracy loci of these vector bundles. Our main technical tool is to use free resolutions as an "enhanced" version of degeneracy loci formulas. We illustrate our approach on several examples and show how they are connected to moduli spaces of Abelian varieties. To make the article accessible to both algebraists and geometers, we also include background material on free resolutions and representation theory.Comment: 41 pages, uses tabmac.sty, Dedicated to David Eisenbud on the occasion of his 65th birthday; v2: fixed some typos and added reference

    Geometric descriptions of entangled states by auxiliaries varieties

    Full text link
    The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting we describe well-known classifications of multipartite entanglement such as 2×2×(n+1)2\times 2\times(n+1), for n1n\geq 1, quantum systems and a new example with the 2×3×32\times 3\times 3 quantum system. Our description completes the approach of Miyake and makes stronger connections with recent work of algebraic geometers. Moreover for the quantum systems detailed in this paper we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.Comment: 32 pages, 15 Tables, 5 Figures. References and remarks adde

    Description du nouveau gravimètre Holweck-Lejay. Résultats obtenus

    No full text
    corecore