95 research outputs found

    Status Report of LNS Accelerator Complex in 2002(IV. Status Report of LNS Accelerator Complex in 2002)

    Get PDF
    Operation status of an electron accelerator complex at Laboratory of Nuclear Science, Tohoku University is reported. After a completion of a new building containing an experimental vault, the inspection for the radiation safety was done in the beginning of October, 2003, so that most of user machine time was consumed in the latter half of the fiscal year 2002

    Status Report of LNS Accelerator Complex in 2001(IV. Status Report of LNS Accelerator Complex in 2001)

    Get PDF
    The electron accelerator complex at the Laboratory of Nuclear Science, Tohoku University has been operated for various fields of science. A 35-year-old 300 MeV electron linac is still working well. However troubles due to aging is rapidly getting serious. In addition, because of multi-purpose use of the linac many different beam characteristics are requested by the users, so that the operation mode has been complicate. In this report, the operation status of the accelerator complex including major troubles experienced in the fiscal year 2001 is described and future plan is shortly discussed by showing the present machine operation

    Exotic radiation from a photonic crystal excited by an ultra-relativistic electron beam

    Get PDF
    We report the observation of an exotic radiation (unconventional Smith-Purcell radiation) from a one-dimensional photonic crystal. The physical origin of the exotic radiation is direct excitation of the photonic bands by an ultra-relativistic electron beam. The spectrum of the exotic radiation follows photonic bands of a certain parity, in striking contrast to the conventional Smith-Purcell radiation, which shows solely a linear dispersion. Key ingredients for the observation are the facts that the electron beam is in an ultra-relativistic region and that the photonic crystal is finite. The origin of the radiation was identified by comparison of experimental and theoretical results.Comment: 4 pages, 5 figure

    Optimum Arrangement of Resonator in Micro-bunch Free Electron Laser(III. Accelerator, Synchrotron Radiation, and Instrumentation)

    Get PDF
    Using a short-bunched beam of electrons from a linear accelator, the output of the micro-bunch FEL has been studied experimentally to clarify the optimum arrangement of an open resonator on the electron orbit. The output depends sharply on the arrangement, and the maximum output is observed when the resonator axis intersects the electron orbit with the angle of 3°

    Development of Hydrophones for Detecting High-Energy Reactions in Water(III. Accelerator, Synchrotron Radiation, and Instrumentation)

    Get PDF
    Acoustic detectors were developed using a piezo ceramic compound PZT. A shape of the PZT detector was essential to obtain a high sensitivity. A detector of a spherically shaped shell structure, whose size was 50 mm in diameter and 2 mm thick, was fabricated. Its sensitivity was calibrated to be about 40 mV/Pa at 54 kHz. Using the hydrophone, acoustic signals generated by an electron-induced cascade shower in water were detected. Experimental results were compared with simulation data and confirmed a consistency in between

    Measurement of the forward-backward asymmetries for charm- and bottom-quark pair productions at <s><\sqrt{s}>=58GeV with electron tagging

    Full text link
    We have measured, with electron tagging, the forward-backward asymmetries of charm- and bottom-quark pair productions at =58.01GeV, based on 23,783 hadronic events selected from a data sample of 197pb1^{-1} taken with the TOPAZ detector at TRISTAN. The measured forward-backward asymmetries are AFBc=0.49±0.20(stat.)±0.08(sys.)A_{FB}^c = -0.49 \pm 0.20(stat.) \pm 0.08 (sys.) and AFBb=0.64±0.35(stat.)±0.13(sys.)A_{FB}^b = -0.64 \pm 0.35(stat.) \pm 0.13 (sys.), which are consistent with the standard model predictions.Comment: 19 pages, Latex format (article), 5 figures included. to be published in Phys. Lett.

    Production of gamma rays by pulsed laser beam Compton scattering off GeV-electrons using a non-planar four-mirror optical cavity

    Full text link
    As part of the positron source R&D for future e+ee^+-e^- colliders and Compton based compact light sources, a high finesse non-planar four-mirror Fabry-Perot cavity has recently been installed at the ATF (KEK, Tsukuba, Japan). The first measurements of the gamma ray flux produced with a such cavity using a pulsed laser is presented here. We demonstrate the production of a flux of 2.7 ±\pm 0.2 gamma rays per bunch crossing (3×106\sim3\times10^6 gammas per second) during the commissioning
    corecore