4,269 research outputs found

    Globular Clusters in the dE,N galaxy NGC 3115 DW1: New Insights from Spectroscopy and HST Photometry

    Full text link
    The properties of globular clusters in dwarf galaxies are key to understanding the formation of globular cluster systems, and in particular in verifying scenarios in which globular cluster systems of larger galaxies formed (at least partly) from the accretion of dwarf galaxies. Here, we revisit the globular cluster system of the dE,N galaxy NGC 3115 DW1 - a companion of the nearby S0 galaxy NGC 3115 - adding Keck/LRIS spectroscopy and HST/WFPC2 imaging to previous ground-based photometry. Spectra for seven globular clusters reveal normal abundance ratios with respect to the Milky Way and M31 clusters, as well as a relatively high mean metallicity ([Fe/H] = -1.0+/-0.1 dex). Crude kinematics indicate a high velocity dispersion within 10 kpc which could either be caused by dark matter dominated outer regions, or by the stripping of outer globular clusters by the nearby giant galaxy NGC 3115. The total galaxy mass out to 3 and 10 kpc lies between 10^10 and 10^11 solar masses and 2*10^10 and 4*10^11 solar masses, respectively, depending on the mass estimator used and the assumptions on cluster orbits and systemic velocity. The HST imaging allows measurement of sizes for two clusters, returning core radii around 2.0 pc, similar to the sizes observed in other galaxies. Spectroscopy allows an estimate of the degree of contamination by foreground stars or background galaxies for the previous ground-based photometry, but does not require a revision of previous results: NGC 3115 DW1 hosts around 60+/-20 clusters which corresponds to a specific frequency of 4.9+/-1.9, on the high end for massive dEs. Given its absolute magnitude (M_V=-17.7 mag) and the properties of its cluster system, NGC 3115 DW1 appears to be a transition between a luminous dE and low-luminosity E galaxy.Comment: 25 pages, 8 figures, accepted for publication in The Astronomical Journal, August 2000 issu

    Plaquette expectation value and gluon condensate in three dimensions

    Full text link
    In three dimensions, the gluon condensate of pure SU(3) gauge theory has ultraviolet divergences up to 4-loop level only. By subtracting the corresponding terms from lattice measurements of the plaquette expectation value and extrapolating to the continuum limit, we extract the finite part of the gluon condensate in lattice regularization. Through a change of regularization scheme to MSbar and (inverse) dimensional reduction, this result would determine the first non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure.Comment: 11 page

    Magnetic Flares on Asymptotic Giant Branch Stars

    Get PDF
    We investigate the consequences of magnetic flares on the surface of asymptotic giant branch (AGB) and similar stars. In contrast to the solar wind, in the winds of AGB stars the gas cooling time is much shorter than the outflow time. As a result, we predict that energetic flaring will not inhibit, and may even enhance, dust formation around AGB stars. If magnetic flares do occur around such stars, we expect some AGB stars to exhibit X-ray emission; indeed certain systems including AGB stars, such as Mira, have been detected in X-rays. However, in these cases, it is difficult to distinguish between potential AGB star X-ray emission and, e.g., X-ray emission from the vicinity of a binary companion. Analysis of an archival ROSAT X-ray spectrum of the Mira system suggests an intrinsic X-ray luminosity 2x10^{29} erg/sec and temperature 10^7 K. These modeling results suggest that magnetic activity, either on the AGB star (Mira A) or on its nearby companion (Mira B), is the source of the X-rays, but do not rule out the possibility that the X-rays are generated by an accretion disk around Mira B.Comment: ApJ, Accepted; revised version of astro-ph/020923

    The stellar dynamics and mass of NGC 1316 using the radial velocities of planetary nebulae

    Full text link
    We present a study of the kinematics of the outer regions of the early-type galaxy NGC 1316, based on radial velocity measurements of 43 planetary nebulae as well as deep integrated-light absorption line spectra. The smoothed velocity field of NGC 1316 indicates fast rotation at a distance of 16 kpc, possibly associated with an elongated feature orthogonal to the inner dust lanes. The mean square stellar velocity is approximately independent of radius, and the estimated total mass of the system is 2.6 x 10^11 M_sun within a radius of 16 kpc, implying an integrated mass-to-light ratio of M/L_B = 8.Comment: 39 pages, 14 figures, in press on The Astrophysical Journal n. 50

    Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: an Insight into Current Flow across Schottky Barriers

    Full text link
    In this article, we study the properties of metal contacts to single-layer molybdenum disulfide (MoS2) crystals, revealing the nature of switching mechanism in MoS2 transistors. On investigating transistor behavior as contact length changes, we find that the contact resistivity for metal/MoS2 junctions is defined by contact area instead of contact width. The minimum gate dependent transfer length is ~0.63 {\mu}m in the on-state for metal (Ti) contacted single-layer MoS2. These results reveal that MoS2 transistors are Schottky barrier transistors, where the on/off states are switched by the tuning the Schottky barriers at contacts. The effective barrier heights for source and drain barriers are primarily controlled by gate and drain biases, respectively. We discuss the drain induced barrier narrowing effect for short channel devices, which may reduce the influence of large contact resistance for MoS2 Schottky barrier transistors at the channel length scaling limit.Comment: ACS Nano, ASAP (2013

    Competition of Mesoscales and Crossover to Tricriticality in Polymer Solutions

    Full text link
    We show that the approach to asymptotic fluctuation-induced critical behavior in polymer solutions is governed by a competition between a correlation length diverging at the critical point and an additional mesoscopic length-scale, the radius of gyration. Accurate light-scattering experiments on polystyrene solutions in cyclohexane with polymer molecular weights ranging from 200,000 up to 11.4 million clearly demonstrate a crossover between two universal regimes: a regime with Ising asymptotic critical behavior, where the correlation length prevails, and a regime with tricritical theta-point behavior determined by a mesoscopic polymer-chain length.Comment: 4 pages in RevTeX with 4 figure

    Multiwavelength observations of Mkn 501 during the 1997 high state

    Full text link
    During the observation period 1997, the nearby Blazar Mkn 501 showed extremely strong emission and high variability. We examine multiwavelength aspects of this event using radio, optical, soft and hard X-ray and TeV data. We concentrate on the medium-timescale variability of the broadband spectra, averaged over weekly intervals. We confirm the previously found correlation between soft and hard X-ray emission and the emission at TeV energies, while the source shows only minor variability at radio and optical wavelengths. The non-linear correlation between hard X-ray and TeV fluxes is consistent with a simple analytic estimate based on an SSC model in which Klein-Nishina effects are important for the highest-energy electrons in the jet, and flux variations are caused by variations of the electron density and/or the spectral index of the electron injection spectrum. The time-averaged spectra are fitted with a Synchrotron Self-Compton (SSC) dominated leptonic jet model, using the full Klein-Nishina cross section and following the self-consistent evolution of relativistic particles along the jet, accounting for gamma-gamma absorption and pair production within the source as well as due to the intergalactic infrared background radiation. The contribution from external inverse-Compton scattering is tightly constrained by the low maximum EGRET flux and found to be negligible at TeV energies. We find that high levels of the X-ray and TeV fluxes can be explained by a hardening of the energy spectra of electrons injected at the base of the jet, in remarkable contrast to the trend found for gamma-ray flares of the flat-spectrum radio quasar PKS 0528+134.Comment: accepted for publication in ApJ, 31 pages, 11 figure
    • …
    corecore