The properties of globular clusters in dwarf galaxies are key to
understanding the formation of globular cluster systems, and in particular in
verifying scenarios in which globular cluster systems of larger galaxies formed
(at least partly) from the accretion of dwarf galaxies. Here, we revisit the
globular cluster system of the dE,N galaxy NGC 3115 DW1 - a companion of the
nearby S0 galaxy NGC 3115 - adding Keck/LRIS spectroscopy and HST/WFPC2 imaging
to previous ground-based photometry. Spectra for seven globular clusters reveal
normal abundance ratios with respect to the Milky Way and M31 clusters, as well
as a relatively high mean metallicity ([Fe/H] = -1.0+/-0.1 dex). Crude
kinematics indicate a high velocity dispersion within 10 kpc which could either
be caused by dark matter dominated outer regions, or by the stripping of outer
globular clusters by the nearby giant galaxy NGC 3115. The total galaxy mass
out to 3 and 10 kpc lies between 10^10 and 10^11 solar masses and 2*10^10 and
4*10^11 solar masses, respectively, depending on the mass estimator used and
the assumptions on cluster orbits and systemic velocity. The HST imaging allows
measurement of sizes for two clusters, returning core radii around 2.0 pc,
similar to the sizes observed in other galaxies. Spectroscopy allows an
estimate of the degree of contamination by foreground stars or background
galaxies for the previous ground-based photometry, but does not require a
revision of previous results: NGC 3115 DW1 hosts around 60+/-20 clusters which
corresponds to a specific frequency of 4.9+/-1.9, on the high end for massive
dEs. Given its absolute magnitude (M_V=-17.7 mag) and the properties of its
cluster system, NGC 3115 DW1 appears to be a transition between a luminous dE
and low-luminosity E galaxy.Comment: 25 pages, 8 figures, accepted for publication in The Astronomical
Journal, August 2000 issu