947 research outputs found

    Possible effect of collective modes in zero magnetic field transport in an electron-hole bilayer

    Full text link
    We report single layer resistivities of 2-dimensional electron and hole gases in an electron-hole bilayer with a 10nm barrier. In a regime where the interlayer interaction is stronger than the intralayer interaction, we find that an insulating state (dρ/dT<0d\rho/dT < 0) emerges at T1.5KT\sim1.5{\rm K} or lower, when both the layers are simultaneously present. This happens deep in the ""metallic" regime, even in layers with kFl>500k_{F}l>500, thus making conventional mechanisms of localisation due to disorder improbable. We suggest that this insulating state may be due to a charge density wave phase, as has been expected in electron-hole bilayers from the Singwi-Tosi-Land-Sj\"olander approximation based calculations of L. Liu {\it et al} [{\em Phys. Rev. B}, {\bf 53}, 7923 (1996)]. Our results are also in qualitative agreement with recent Path-Integral-Monte-Carlo simulations of a two component plasma in the low temperature regime [ P. Ludwig {\it et al}. {\em Contrib. Plasma Physics} {\bf 47}, No. 4-5, 335 (2007)]Comment: 5 pages + 3 EPS figures (replaced with published version

    Structure of the ovaries of the Nimba otter shrew, Micropotamogale lamottei, and the Madagascar hedgehog tenrec, Echinops telfairi

    Get PDF
    The otter shrews are members of the subfamily Potamogalinae within the family Tenrecidae. No description of the ovaries of any member of this subfamily has been published previously. The lesser hedgehog tenrec, Echinops telfairi, is a member of the subfamily Tenrecinae of the same family and, although its ovaries have not been described, other members of this subfamily have been shown to have ovaries with non-antral follicles. Examination of these two species illustrated that non-antral follicles were characteristic of the ovaries of both species, as was clefting and lobulation of the ovaries. Juvenile otter shrews range from those with only small follicles in the cortex to those with 300- to 400-mu m follicles similar to those seen in non-pregnant and pregnant adults. As in other species, most of the growth of the oocyte occurred when follicles had one to two layers of granulosa cells. When larger follicles became atretic in the Nimba otter shrew, hypertrophy of the theca interna produced nodules of glandular interstitial tissue. In the tenrec, the hypertrophying theca interna cells in most large follicles appeared to undergo degeneration. Both species had some follicular fluid in the intercellular spaces between the more peripheral granulosa cells. It is suggested that this fluid could aid in separation of the cumulus from the remaining granulosa at ovulation. The protruding follicles in lobules and absence of a tunica albuginea might also facilitate ovulation of non-antral follicles. Ovaries with a thin-absent tunica albuginea and follicles with small-absent antra are widespread within both the Eulipotyphla and in the Afrosoricida, suggesting that such features may represent a primitive condition in ovarian development. Lobulated and deeply crypted ovaries are found in both groups but are not as common in the Eulipotyphla making inclusion of this feature as primitive more speculative. Copyright (C) 2005 S. Karger AG, Basel

    Linear non-hysteretic gating of a very high density 2DEG in an undoped metal-semiconductor-metal sandwich structure

    Full text link
    Modulation doped GaAs-AlGaAs quantum well based structures are usually used to achieve very high mobility 2-dimensional electron (or hole) gases. Usually high mobilities (>107cm2V1s1>10^{7}{\rm{cm}^{2}\rm{V}^{-1}\rm{s}^{-1}}) are achieved at high densities. A loss of linear gateability is often associated with the highest mobilites, on account of a some residual hopping or parallel conduction in the doped regions. We have developed a method of using fully undoped GaAs-AlGaAs quantum wells, where densities 6×1011cm2\approx{6\times10^{11}\rm{cm}^{-2}} can be achieved while maintaining fully linear and non-hysteretic gateability. We use these devices to understand the possible mobility limiting mechanisms at very high densities.Comment: 4 pages, 3 eps figure

    Crossover scaling from classical to nonclassical critical behavior

    Full text link
    We study the crossover between classical and nonclassical critical behaviors. The critical crossover limit is driven by the Ginzburg number G. The corresponding scaling functions are universal with respect to any possible microscopic mechanism which can vary G, such as changing the range or the strength of the interactions. The critical crossover describes the unique flow from the unstable Gaussian to the stable nonclassical fixed point. The scaling functions are related to the continuum renormalization-group functions. We show these features explicitly in the large-N limit of the O(N) phi^4 model. We also show that the effective susceptibility exponent is nonmonotonic in the low-temperature phase of the three-dimensional Ising model.Comment: 5 pages, final version to appear in Phys. Rev.

    Nonmonotonical crossover of the effective susceptibility exponent

    Full text link
    We have numerically determined the behavior of the magnetic susceptibility upon approach of the critical point in two-dimensional spin systems with an interaction range that was varied over nearly two orders of magnitude. The full crossover from classical to Ising-like critical behavior, spanning several decades in the reduced temperature, could be observed. Our results convincingly show that the effective susceptibility exponent gamma_eff changes nonmonotonically from its classical to its Ising value when approaching the critical point in the ordered phase. In the disordered phase the behavior is monotonic. Furthermore the hypothesis that the crossover function is universal is supported.Comment: 4 pages RevTeX 3.0/3.1, 5 Encapsulated PostScript figures. Uses epsf.sty. Accepted for publication in Physical Review Letters. Also available as PostScript and PDF file at http://www.tn.tudelft.nl/tn/erikpubs.htm

    Classical-to-critical crossovers from field theory

    Get PDF
    We extent the previous determinations of nonasymptotic critical behavior of Phys. Rev B32, 7209 (1985) and B35, 3585 (1987) to accurate expressions of the complete classical-to-critical crossover (in the 3-d field theory) in terms of the temperature-like scaling field (i.e., along the critical isochore) for : 1) the correlation length, the susceptibility and the specific heat in the homogeneous phase for the n-vector model (n=1 to 3) and 2) for the spontaneous magnetization (coexistence curve), the susceptibility and the specific heat in the inhomogeneous phase for the Ising model (n=1). The present calculations include the seventh loop order of Murray and Nickel (1991) and closely account for the up-to-date estimates of universal asymptotic critical quantities (exponents and amplitude combinations) provided by Guida and Zinn-Justin [J. Phys. A31, 8103 (1998)].Comment: 4 figs, 4 program documents in appendix, some corrections adde

    Field Theory Entropy, the HH-theorem and the Renormalization Group

    Get PDF
    We consider entropy and relative entropy in Field theory and establish relevant monotonicity properties with respect to the couplings. The relative entropy in a field theory with a hierarchy of renormalization group fixed points ranks the fixed points, the lowest relative entropy being assigned to the highest multicritical point. We argue that as a consequence of a generalized HH theorem Wilsonian RG flows induce an increase in entropy and propose the relative entropy as the natural quantity which increases from one fixed point to another in more than two dimensions.Comment: 25 pages, plain TeX (macros included), 6 ps figures. Addition in title. Entropy of cutoff Gaussian model modified in section 4 to avoid a divergence. Therefore, last figure modified. Other minor changes to improve readability. Version to appear in Phys. Rev.

    Tests of Statistical Methods for Estimating Galaxy Luminosity Function and Applications to the Hubble Deep Field

    Full text link
    We studied the statistical methods for the estimation of the luminosity function (LF) of galaxies. We focused on four nonparametric estimators: 1/Vmax1/V_{\rm max} estimator, maximum-likelihood estimator of Efstathiou et al. (1988), Cho{\l}oniewski's estimator, and improved Lynden-Bell's estimator. The performance of the 1/Vmax1/V_{\rm max} estimator has been recently questioned, especially for the faint-end estimation of the LF. We improved these estimators for the studies of the distant Universe, and examined their performances for various classes of functional forms by Monte Carlo simulations. We also applied these estimation methods to the mock 2dF redshift survey catalog prepared by Cole et al. (1998). We found that 1/Vmax1/V_{\rm max} estimator yields a completely unbiased result if there is no inhomogeneity, but is not robust against clusters or voids. This is consistent with the well-known results, and we did not confirm the bias trend of 1/Vmax1/V_{\rm max} estimator claimed by Willmer (1997) in the case of homogeneous sample. We also found that the other three maximum-likelihood type estimators are quite robust and give consistent results with each other. In practice we recommend Cho{\l}oniewski's estimator for two reasons: 1. it simultaneously provides the shape and normalization of the LF; 2. it is the fastest among these four estimators, because of the algorithmic simplicity. Then, we analyzed the photometric redshift data of the Hubble Deep Field prepared by Fern\'{a}ndez-Soto et al. (1999) using the above four methods. We also derived luminosity density ρL\rho_{\rm L} at BB- and II-band. Our BB-band estimation is roughly consistent with that of Sawicki, Lin, & Yee (1997), but a few times lower at 2.0<z<3.02.0 < z < 3.0. The evolution of ρL(I)\rho_{\rm L}(I) is found to be less prominent.Comment: To appear in ApJS July 2000 issue. 36 page
    corecore