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Field theory entropy, the H theorem, and the renormalization group
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We consider entropy and relative entropy in field theory and establish relevant monotonicity properties with
respect to the couplings. The relative entropy in a field theory with a hierarchy of renormalization-group fixed
points ranks the fixed points, the lowest relative entropy being assigned to the highest multicritical point. We
argue that as a consequence of a generalizedH theorem Wilsonian RG flows induce an increase in entropy and
propose the relative entropy as the natural quantity which increases from one fixed point to another in more
than two dimensions.@S0556-2821~96!04620-6#

PACS number~s!: 11.10.Gh, 05.70.Jk, 64.60.Ak, 65.50.1m
e
-

-
-

-

’
l
e

ng
w
re
te-

y

-
as
s
lt
c-

-

e
d
r-
o
e
e
r,
al
of
e

I. INTRODUCTION

The concept of entropy was introduced by Claus
through the study of thermodynamical systems. Howeve
was Boltzmann’s essential discovery that entropy is the na
ral quantity that bridges the microscopic and macrosco
descriptions of a system which gave it its modern interpre
tion. A more general definition, proposed by Gibbs allow
its extension to any system where probability theory play
role. It is a variant of this entropy which we discuss in a fie
theoretic context. Boltzmann also defined, in kinetic theo
a quantityH, that decreases with time and for a nonintera
ing gas coincides with the entropy at equilibrium~H theo-
rem!. These ideas also admit generalization and in our c
text we will see that analogous ‘‘nonequilibrium’’ ideas ca
be associated with Wilsonian renormalization in our fie
theory entropic setting.

Probabilistic entropy can be defined for a field theory a
in terms of appropriate variables is either a monotonic
convex function of those variables. A variant of it, the rel
tive entropy, is suited to the study of systems where ther
a distinguished point as in the case of critical phenome
where a critical point is distinguished.

We shall see that monotonicity of the relative entro
along lines that depart from the distinguished point in co
pling space entails its increase in the crossover from the c
cal behavior associated with one domain of scale invaria
or fixed point to that associated with a ‘‘lower’’ fixed poin
thus providing a quantity that naturally ‘‘ranks’’ the fixe
points. This property is a consequence of convexity of
appropriate thermodynamic surface, which in turn is
flected in the general structure of the phase diagram@1#. The
phase diagrams of lower critical points emerge as projecti
of the larger phase diagram. We shall see that the nat
geometrical setting for these phase diagrams is projec
geometry.

There have been many attempts to capture the irrevers
nature of a Wilson renormalization group~RG! flow in some
function which is intended to be monotonic under the ite
tion of a Wilson RG transformation@2#. These attempts have
been successful in two dimensions where the Zamolodchi
540556-2821/96/54~8!/5163~11!/$10.00
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C function has the desired property. The monotonicity of th
flow of theC function under scale transformations is remi
niscent of Boltzmann’sH function and this result has been
accordingly called theC theorem. Boltzmann’sH function
was the generalization of entropy to nonequilibrium situa
tions, in particular, to a gas with an arbitrary particle distri
bution in phase space. He proved thatH increases whenever
the gas evolves to its Maxwell-Boltzmann equilibrium distri
bution @3#, effectively making this evolution an irreversible
process. We will argue that an analogue ‘‘nonequilibrium’
probabilistic entropy for a field theory provides a natura
function that must increase under a Wilsonian RG flow. W
shall consider a version of theH theorem suited to our needs,
to see how the increase occurs. A differential increase alo
the RG trajectories demands detailed knowledge of the flo
lines; however, statements about the ends of the flows a
more robust and thus more easily established. It is such sta
ments that we shall establish.

Among other attempts to apply the methods of entrop
and irreversibility to quantum field theory, it was shown in
@4# that an entropy defined from the quantum particle den
sity, understood as a probability density, should increase
the field theory reaches its classical limit. If we regard thi
limit as a crossover between different theories, that resu
should be directly connected to ours. Regarding the conne
tion with two-dimensional conformal field theories and
Zamolodchikov’sC theorem it is noteworthy that calcula-
tions of the geometrical or entanglement entropy~see@5# for
background! give a quantity proportional to the central
chargec @6#. We will not however pursue possible connec
tions with the entanglement entropy here.

The structure of the paper is as follows: In Sec. II w
review the definitions of entropy and relative entropy an
adapt them to field theory. We study some of their prope
ties, especially the property of monotonicity with respect t
couplings, related with convexity. Section III discusses th
crossover of the relative entropy between field theories. W
provide some examples, ranging from the trivial crossove
in the Gaussian model as a function of mass, to the tricritic
to critical crossover, which illustrates the generic features
this phenomenon. This section ends with a brief study of th
5163 © 1996 The American Physical Society
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5164 54JOSÉGAITE AND DENJOE O’CONNOR
geometric structure of phase diagrams relevant to crosso
phenomena. Although Sec. III heavily relies on RG con
structs, the picture of the RG used is somewhat simp
minded. In Sec. IV we improve on that picture, introducing
Wilson’s RG ideas. We see how these ideas naturally le
one to interpret crossover fromcutoff-dependent to cutoff-
independentdegrees of freedom as an irreversible process
the sense of thermodynamics and therefore to conside
nonequilibrium field theoreticH-theorem-type entropy.

II. ENTROPY IN FIELD THEORY, DEFINITION AND
PROPERTIES

For a normalized probability distributionP, we take as
our definition of probabilistic entropy,

Sa52TrP lnP ~2.1!

and will refer to this as ‘‘absolute probabilistic entropy.’’ For
example, for a single random variablef governed by the
normalized Gaussian probability distribution

P5exp~2 1
2 m

2f22 jf1W@ j ,m2# !, ~2.2!

whereW[ j ,m2]52 j 2/2m211
2 ln(m

2/2p) and Tr is under-
stood to mean integration overf. The absolute probabilistic
entropy is given by

Sa5
1

2
2
1

2
ln
m2

2p
. ~2.3!

A natural generalization of this entropy known as the relativ
entropy@7# is given by

S@P,P0#5Tr@P ln~P/P0!#, ~2.4!

whereP0 specifies thea priori probabilities. The sign change
relative to Eq.~2.1! is conventional. Relative entropy plays
an important role in statistics and the theory of large devi
tions @8,9#. It is a convex function ofP with S>0 and equal-
ity applying if and only ifP5P0. It measures the statistical
distance between the probability distributionsP andP0 in
the sense that the smallerS@P,P0# the harder it is to discrimi-
nate betweenP andP0. The infinitesimal form of this dis-
tance provides a metric known as the Fisher information m
trix @10# and provides a curved metric on the space o
parametrized probability distributions and the space of co
plings in field theory@11#. For example, if we consider the
probability distribution~2.2!, with j50 for simplicity, the
entropy of the Gaussian distribution with standard deviatio
m2 relative to the Gaussian distribution with standard devia
tion m0

2 is given by

S@m2,m0
2#5

1

2
ln
m2

m0
2 1

m0
2

2m22
1

2
~2.5!

and can be easily seen to have the desired properties.
taking thea priori probabilities to be given by the uniform
distribution we recover Eq.~2.1!, modulo a sign. However,
we see that Eq.~2.5! approaches Eq.~2.3! but modulo a
divergent constant asm0→0. This reflects the fact that the
uniform distribution is not normalizable. The uniform distri-
bution in this setting does not strictly fit the criteria of a
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suitablea priori distribution P0 and therefore violates the
assumptions guaranteeing the positivity of the relative e
tropy. More generally for a continuously distributed random
variable a more suitable distribution, with respect to whic
one can define thea priori probabilities, is one that resides in
the same function space.

In the case of a field theory Tr will be a path integral ove
the field configurations and just as when defining the par
tion function of a field theory an ultraviolet and an infrare
regulator are, in general, necessary. Convenient infrar
regulators will be to consider a massive field theory in
finite box. It is then convenient to deal with the entropy pe
unit volume or specific entropyS5S/V whereV is the vol-
ume of the manifold,M, on which the field theory is de-
fined. One would generally expect thatS would contain di-
vergent contributions as the regulators are remove
However, these contributions disappear in an appropriat
defined relative entropy.

For a field theory consider

Pz5exp~2I 0@f,$l%#2zIc@f,$ l %#1W@z,$l%,$ l %#!,
~2.6!

whereW[z,$l%,$ l %]52ln Z[z,$l%,$ l %], with

Z@z,$l%,$ l %#5E D@f#e2I0@f,$l%#2zIc@f,$ l %#, ~2.7!

i.e., the total action for the random field variablef is given
by I5I 0[f,$l%]1zIc[f,$ l %]. We have divided the param-
eters of the theory into two sets: The set$l% is the set of
coupling constants associated with the fixed distributionP0
and$ l % are those associated with the additional, or crossov
contribution to the actionzIc. The two sets are assumed to b
distinct, the set$ l % may, however, incorporate changes to th
couplings of the set$l%.

We have introduced the variablez primarily for later con-
venience. For a given functional integral ‘‘measure,’’ ass
ciated with integration over a fixed function space~this may
be made well defined by fixing, for example, ultraviolet an
infrared cutoffs!, W[z,$l%,$ l %] reduces toW0@$l%# when
z50. With the notation

^X&5E D@f#X@f#e2I0@f,$l%#2zIc@f,$ l %#1W@z,$l%,$ l %#, ~2.8!

assuming analyticity inz in the neighborhood ofz51, the
value of principal interest to us, we have

dW@z,$l%,$ l %#

dz
5^I c&, ~2.9!

and more generally

d^X&
dz

52~^XIc&2^X&^I c&!.

We can therefore express the relative entropy as

S@z,$l%,$ l %#5W@z,$l%,$ l %#2W0@$l%#2z^I c@f,$ l %#&.
~2.10!
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It is the Legendre transform with respect toz of
Wc5W2W0:

S@z.$l%,$ l %#5Wc@z,$l%,$ l %#2z
dWc@z,$l%,$ l %#

dz
.

~2.11!

Next consider the derivative with respect toz of S:

dS@z,$l%,$ l %#

dz
52z

d2W@z,$l%,$ l %#

dz2
. ~2.12!

Reexpressing this in terms of expectation values we have

z
dS@z,$l%,$ l %#

dz
5z2^~ I c2^I c&!2& ~2.13!

implying that S is a monotonic increasing function ofuzu
which is zero atz50. We also deduce from Eqs.~2.12! and
~2.13! thatW is a convex function ofz.

Note that the expression~2.11! is amenable to standard
treatment by field theoretic means. In perturbation theory
is diagrammatically a sum of connected vacuum graphs. F
thermore, if the action is a linear combination of terms

I c@f,$ l %#5 l af a@f# ~2.14!

then withzla5ta ~z is an overall factor! we have

S@$l%,$t%#5W@$l%,$t%#2W@0#2ta]aW@$l%,$t%#,
~2.15!

where]a5]/]ta. Thus for this situation the relative entrop
of the field theory is the complete Legendre transform of t
generating functionW with respect to all the couplingsta.
The negative of the ‘‘absolute’’ entropy or entropy relativ
to the uniform distribution~equivalent toI 0@f,$l%#50! would
be the complete Legendre transform with respect to all t
couplings in such a field theory. In terms of its natural va
ables^ f a&5]aW the relative entropy itself is a convex func
tion ~see below!. It proves useful in what follows to regard i
as a function of the couplings through^ f a&(t).

Let us consider the change in relative entropy due to
infinitesimal change in the couplings of the theory. This c
be expressed as a one-form on the space of couplings. A l
rearrangement shows that such a change can be express
the form

dS5z~d^I c&2^dIc&! ~2.16!

which implies thatz21 performs the role of an integrating
factor for the difference of infinitesimalsd^I c&2^dIc&, just
as temperature does for the absolute entropy. We could m
generally consider differentz’s for each of the composite
operatorsf a@f# and obtain the generalization of~2.16!:

dS5(
a

Zfa
~d^ f a@f#&2^d fa@f#&!.

In renormalization theory theZfa
play the role of composite

operator renormalizations~e.g., l af a[f]5
1
2* tf

2 the com-
posite operatorf2 gets renormalized byZf2!. Thus one
, it
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could interpret composite operator renormalization facto
Zfa

~or in the exampleZf2! as integrating factors.
Again for the case~2.14!, since

z2^~ I c2^I c&!2&5ta^~ f a2^ f a&!~ f b2^ f b&!&tb ~2.17!

and each of thel a are arbitrary, we see that the quadratic
form

Qab5^~ f a2^ f a&!~ f b2^ f b&!&52
]2W

]ta]tb
~2.18!

is a positive definite matrix. This establishes the key proper
thatW is a convex function of the couplings.S is similarly a
convex function of thê f a&, since

Qab5Qab
215

]2S
]^ f a&]^ f b&

. ~2.19!

The matrixQab is the Fisher information matrix and plays
the role of a natural metric on the space of couplings$ l %
measuring the infinitesimal distance between probability di
tributions.

We end this section by emphasizing that in the above w
have established thatW is a convex function of thel a andS
is a convex function of thêf a&. Note thatthe usual effective
action can be viewed as the relative entropywith
zIc[f,$ l %]5*MJf and is therefore a convex function of
^f&. The relative entropy is equivalently a generalization o
the effective action to a more general setting. A final obse
vation is that the relations

f̄ a5^ f a&5]aW~ t ! ~2.20!

are our field equations~on-shell conditions! and can be as-
sociated with equilibrium. If one releases these constrain
by, for example, leaving the equilibrium setting, one ca
considerS as a function of both thef̄ a and l

a. The equilib-
rium conditions are then specified by Eq.~2.20!.

III. CROSSOVER BETWEEN FIELD THEORIES

The concept of crossover arises in the physics of pha
transitions, where it means the change from one type of cri
cal behavior to another. This implies a change of critica
exponents or any other quantity associated with critical b
havior. In our context, a field theory~FT! is defined by a
Lagrangian with a number of coupling constants. We wi
restrict our considerations to the case of superrenormaliza
theories, in which case the theories can be taken to provi
well-defined microscopic theories. The Lagrangian captur
the universality class of a particular phase transition whe
the relevant couplings are tuned to appropriate values; the
relevant couplings constitute a parametrization of the spa
of fields and couplings close to the associated fixed poi
~FP! of the RG. The functional integral provides global in-
formation, which can be depicted in a phase diagram, wi
variablesW, $ l %. The most unstable FP will therefore have
the largest dimensional phase diagram and far from this F
may exist another where one~or more! of the maximal set of
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couplings becomes irrelevant1 and drops out. This implies
the change to a universality class with fewer relevant co
plings, hence a reduced phase diagram corresponding to
jecting out the couplings which became irrelevant. The se
ond FP and the reduced phase diagram define a new fi
theory.

It is fairly easy to see that in the region where homog
neous scaling holds and the RG trajectories satisfy linear
equations there can be no more fixed points. One can de
new coordinates called nonlinear scaling fields@12# where
homogeneous scaling applies throughout the phase diagr
This possibility is also well known in the theory of ordinar
differential equations~ODE’s!, where it is called Poincare´’s
theorem@13, p. 175#. In these coordinates, then, any other F
must be placed at infinity in a coordinate system adapted
the first FP. To study the crossover, when a FP is at infini
we need to perform some kind of compactification of th
phase diagram. Thus, we shall think of the total phase d
gram as a compact manifold containing the maximum nu
ber of genericRG FP’s. This point of view is especially
sensible regarding the topological nature of RG flows. Fu
thermore, thinking of the RG as just an ODE indicates wh
type of compactification of phase diagrams is adequate: I
known in the theory of ODE’s that the analysis of the flow
infinity and its possible singularities can be done by compl
ing the affine space to projective space@14#. This as we shall
see is also appropriate for phase diagrams.

We will restrict our considerations in what follows to sca
lar Z2 symmetric field theories with polynomial potential
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and nonsymmetry breaking fields. For illustration, we wi
discuss some exact results pertaining to solvable statist
models, which illuminate the behavior of the field theories
the same universality classes.

A. Case„0…: The Gaussian model and the zero to infinite mass
crossover

Consider the action

I 0
0@f,$l~0!%#5E

M
H a

2
~]f!21

r c
2

f2J . ~3.1!

The action associated withPz is then

I 0@f,$l~0!%,t#5I 0
0@f,$l~0!%#1E

M

t

2
f2. ~3.2!

The crossover here is that associated withz5t. The model is
pathological in that it is not well defined fort,0 where there
is no ground state, but our interest is int>0. The crossover
of interest here is then fromt50 to large values oft. To
make the model completely well defined we place it on
lattice and take the continuum limit.

For the Gaussian model on a square lattice with latti
spacing, taken for simplicity to beaAa, and with periodic
boundary conditions and sides of lengthL5KaAa, in d di-
mensions, we have, in the thermodynamic limitK→` @15#,
W@a,r #5
Kd

2 E
2p

p dv1

2p
•••E

2p

p dvd

2p
lnH ~4/a2!sin2~v1/2!1•••1~4/a2!sin2~vd/2!1r c1t

2p J . ~3.3!
ot-
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With the critical point of the model att50 we haver c50.
The relative entropy is

S@a,t#5W@a,t#2W@a,0#2t
dW@a,t#

dt
~3.4!

so ifW[a,t] took the formW[a,t]5W̃[a,t]1c1bt the lin-
ear termc1bt would not contribute to the relative entropy
In the thermodynamic limit, if we restrict our consideration
to a dimensionally regularized continuum model then
d,4 the divergences that require subtraction are indeed
the linear form and we find that the relative entropy per u
volume is given by

S5
~d22!p

2 sin~p~d12!/2!G@~d12!/2#~4p!d/2
td/2. ~3.5!

1Here relevant and irrelevant have both their intuitive and R
meaning.
.
s
for
of

nit

For d.2 and sufficiently smallt, in the neighborhood of
the critical point, the relative entropy of both the continuum
model and the lattice model agree. This can be seen by n
ing that the second derivative ofW with respect tot diverges
for small t and, ford,4, the coefficient of divergence is the
same for both the lattice and continuum expressions. Th
integrating back to obtainW[ t] will give expressions which
differ by only a linear term int for small t but this does not
affect the relative entropy. From Eq.~3.5! the increase in
relative entropy witht is manifest.

B. Case„i…: The Ising universality class

Let us next consider the two-dimensional Ising model o
a rectangular lattice. For simplicity we will restrict our con-
siderations to equal couplings in the different directions
Since the random variables here~the Ising spins! take dis-
crete values it is natural to consider the absolute entro
which corresponds to choosing entropy relative to the di
crete counting measure and a sign change. This is the st
dard absolute entropy in this case. This model, as is we
known, admits an exact solution@16# for the partition func-
tion with

G
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W@k#52 1
2 ln@2 sinh~2k!#2E

0

p dv

2p
arccosh$cosh~2k!cosh@2K~k!#2cos~v!% ~3.6!
en-

en
ty
es
ill

or

g

a
the
ted
for a rectangular lattice whereK(k)51
2ln coth(k) and

k5J/kBT. The entropy is then

Sa52SW~k!2k
dW~k!

dk D ~3.7!

and plotted againstk in Fig. 1~a!. The monotonicity property
of the entropy becomes one of convexity when the entropy
expressed in terms of the internal energyU as can be seen in
Fig. 1~b!.

Now, of course, we can also consider relative entropy
this setting. Since near its critical point the two-dimension
Ising model is in the universality class of af4 field theory, to
facilitate comparison with the field theory it is natural t
choose an entropy relative to the critical point lattice Isin
model. This is also natural since the critical point is a pr
ferred point in the model. This relative entropy is given by

S5W~k!2W~k* !2~k2k* !
dW~k!

dk
, ~3.8!

wherek*51
2 ln~&11!;0.440 686 8 is the critical coupling

of the Ising model. We have plotted this in Fig. 2~a!. We see
that it is a monotonic increasing function ofuk2k* u and is

FIG. 1. ~a! The entropySa(k) for the two-dimensional~2D!
Ising model.~b! The entropySa(U) for the 2D Ising model.
is

in
al

o
g
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zero at the critical point. In Fig. 2~b! we plot this entropy as
a function of the relevant expectation value, the internal
ergy U5dW/dk, and set the origin atU* , the internal en-
ergy at the critical point. Naturally, the graph is convex.

In more than two dimensions the Ising model has not be
solved exactly. Its critical behavior is in the universali
class of af4 field theory, so we expect the general featur
of the two models to merge near the critical point. We w
next consider thef4 theory.

We will choose the fixed probability distributionP0 for
thef4 theory to be that associated with the critical point,
massless theory, which is described by the action

I 1
0@f,$l~1!%#5E

M
H a

2
~]f!21

r c
2

f21
l

4!
f4J

~3.9!

with l some arbitrary but fixed value of the bare couplin
constant. We restrict our considerations tod,4 where the
theory is superrenormalizable. The parameterr c depends on
the cutoff ~UV regulator! needed to render the theory at
path-integral level well defined, and is chosen such that
correlation length is infinite. The complete action associa
with Pz is

FIG. 2. ~a! The relative entropyS(k,k* ) for the 2D Ising model.
~b! The relative entropyS(U,U* ) for the 2D Ising model.
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I 1@f,$l~1!%,t#5I 1
0@f,$l~1!%#1E

M

t

2
f2. ~3.10!

The crossover of interest here is that associated withz5utu.
There are clearly two branches to the crossover, that fot
positive and negative, respectively. We will restrict our co
siderations to the positive branch, corresponding to^f&50,
and the range oft is from 0 to`. The identification ofz with
t allows us to use the arguments of the previous sect
From Eq.~2.13! we conclude that the relative entropy is
monotonic function along this crossover line. This is t
crossover line from the Wilson Fisher fixed point to the i
finite mass Gaussian fixed point.

In the presence of a fixed UV cutoff one could consid
the reference probability distribution to be that for whic
l50 and then placel into the crossover portion of the ac
tion. This provides us with another crossover and in t
more complicated phase diagram there are in fact two Ga
ian fixed points; a massless and infinite mass one, both a
ciated withl50 ~see@17# for a description of the total phas
diagram!. The crossover between them is that associa
with ‘‘case ~0!’’ described above. If one further restricts t
l5`, this is equivalent to restricting to the fixed point co
pling and is believed to be equivalent to the Ising model
the scaling region. The parameterst andk then should play
equivalent roles, and describe the same crossover. In thf4

model one can further consider crossovers associated
varyingl at fixedt, by including a term*M~l /4!!f4 in I c. In
this family there will be a crossover curve at infinity whic
varies from one infinite mass Gaussian fixed point to a
other. Such crossovers can be viewed as a special case o
next example.

C. Case„ii …: Models with two crossover parameters

Here the action for the fixed distribution from which w
calculate the relative entropy is taken to be

I 2
0@f,$l~2!%#5E

M
H a

2
~]f!21

r tc
2

f21
l tc

4!
f41

g

6!
f6J

~3.11!

~g fixed! and the action of the model is

I @f,$l~2!%,t,l #5I 2
0@f,$l~2!%#1E

M
H t2 f21

l

4!
f4J .

~3.12!

The tricritical point corresponds to botht andl zero. There is
now a plane to be considered. First consider the line form
settingl50 and rangingt from zero to infinity. This is a line
leaving the tricritical point and going to an infinite mas
Gaussian model. Again we see from the arguments of
previous section that the relative entropy is a monoto
function along this line. Similarly we can consider the lin
t50 andl ranging through different values. Again for pos
tive l the relative entropy is a monotonic function of th
variable. The critical line is a curve in this plane, since t
critical temperatureTc should depend onl and one needs to
changet as a function ofl to track it.
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It is interesting to consider the reduction of the two
dimensional phase diagram associated with the neighb
hood of the tricritical point to the one-dimensional phas
diagram of the critical point. This latter fixed point is asso
ciated withl5` and the crossover from it to the infinite mas
Gaussian fixed point att5` lies completely at infinity in the
tricritical phase diagram. In the previous setting the cros
over started from a finite location because we did not inclu
the tricritical point. The reduction can be achieved as a pr
jection from the tricritical phase diagram as follows: For an
value of (t,l ) we can let both go to infinity while keeping
their ratio constant. The value oft/ l parametrizes points on
the line at infinity. Moreover, that projection is realized b
letting z run to infinity, thus ensuring that the relative en
tropy increases in the process.

One can further appreciate the structure of the phase d
gram commented on above in terms of the shape of R
trajectories, identified with scaling the nonlinear scalin
field, where the phase diagram is presented in these coo
nates. In the present case, the family of scaling curves
t5clw for variousc, with only one parameter given by the
ratio of scaling dimensions of the relevant field
w5D t/D l.1, called the crossover exponent. These curv
have the property that they are all tangent to thet axis at the
origin and any straight linet5al intersects them at some
finite point, l i5(a/c)1/(w21) andt i5ali . For any givenc the
values ofl i and t i increase asa decreases and go to infinity
asa→0. This clearly shows that the stable fixed point of th
flow is on the line at infinity and, in particular, its projective
coordinate isa50. The pointa5` on the line at infinity is
also fixed but unstable. In general, as the overall factorz is
taken to infinity we shall hit some point on the separatr
connecting these two points at infinity.

The tricritical flow diagram that includes the separatri
can be obtained by a projective transformation~see Sec.
III E !. It is essentially of the same form as that considered
Nicoll, Chang, and Stanley@17#, with the axes such that the
tricritical point is at the origin~Fig. 3!. The critical line is
the vertical line~the l axis!, and the crossover to the Gauss
ian fixed point which is the most stable fixed point is the lin
at infinity, in the positive quadrant of the (t,l ) plane. The
Gaussian fixed point is at the end of the horizontalt axis.
Our variablez will parametrize radial lines in this (t,l )
plane. As far as the parametera is concerned, one could
introduce another axis in the phase diagram, correspond
to this variable. This can be done for every crossover, a
corresponds to crossover as the momentum is varied.

D. The general case of many crossovers

The question arises as to thenaturalnessof the choice of
a priori distributionP0. In the case ofZ2 models in dimen-
sion 4.d.2 there is a natural choice forP0. It is that field
theory with the maximum polynomial potential that is supe
renormalizable in this dimension. This theory admits th
maximum number of nontrivial universal crossovers in th
dimension. For this range of dimensions we, therefor
choose

I k
0@f,$l%#5E

M
H a

2
~]f!21 (

a51

k11
l2a

~2a!!
faJ ~3.13!
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and the full action is then

I k@f,$l%,l 2 ,...,l 2k#

5I k
0@f,$l%#1E

M
H (
n51

k
l 2n

~2n!!
f2nJ . ~3.14!

The different crossover lines from the multicritical point ca
then be arranged to correspond to flows from the orig
along straight lines~in particular, the coordinate axes!. From
the general arguments of the previous section the rela
entropy increases along those trajectories.

The crossovers in the above system can be organized
natural hierarchical sequence, descending from any one m
ticritical fixed point to the one just below in order of criti-
cality. In this way one loses one irrelevant coupling at ea
step. The reduced phase diagram at each step is the hy
plane at infinity of the previous diagram. Thus with our com
pactification they constitute a sequence of nested projec
spaces, ending in a point. This structure deserves more
tailed treatment.

E. The geometrical structure of the phase diagram

The phase diagrams for the critical models correspond
to different RG fixed points are nested in a natural way
projective spaces,

RPk.RPk21.•••.RP1.RP0 ,

with RP0 being just a point that represents the infinite ma
Gaussian fixed point. In the action~3.14! the set of couplings
l 2n together with the couplingl2k12 lend themselves to an
interpretation as homogeneous coordinates for the projec
spaceRPk . The value ofl2k12 is to be held fixed along any
crossover so that the ratiosr 2n5 l 2n/l2k12 become affine
coordinates. Moreover, in the crossover from an upper cr

FIG. 3. Tricritical flow diagram showing the tricritical, critical,
and Gaussian FP~with the mean-field crossover exponentw52!.
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cal point to a lower critical point, e.g., the tricritical to criti
cal crossover, the phase diagram for the latter is realized
the codimension-one~hyper!plane at infinity, which is
equivalent tol2k1250. Thusl2k12 effectively disappears
from the action of the next critical point, which hasl 2k as the
highest coupling in the sequence. The set of couplin
l 2 ,...,l 2k then constitute a system of homogeneous coor
nates in the reduced phase diagram. One can reach a po
this phase diagram by makingz go to infinity for different
~fixed! values of l 2i / l 2k. This realization ensures that th
relative entropy of points in this second phase diagram
lower than that of points of the first via monotonicity inz as
discussed earlier.

One might, however, think that both phase diagrams c
not be incorporated in the same picture. This is not so: O
can perform a projective change of coordinates so as to b
the ~hyper!plane at infinity to a finite distance. This can b
achieved by first rescaling tol2k1251. For example, in the
tricritical to critical crossover of Sec. III B, the condition tha
g be fixed~e.g.,g51 where we now use dimensionless co
plings, the originalg, which we now labelgB , setting the
scale! places the phase diagram of the critical fixed point
infinity. However, new homogeneous coordinatesr̄ and l̄
and ḡ, defined so that the projective space is realized as
plane r1l1g51 rather than byg51 can be specified by
defining

r̄5r ,

l̄5l,

ḡ5r1l1g. ~3.15!

In these coordinates our previous ratios, that is, the affi
coordinates, take the form

r

g
5

r̄ /ḡ

12 r̄ /ḡ2l̄/ḡ
,

~3.16!
l

g
5

l̄/ḡ

12 r̄ /ḡ2l̄/ḡ
.

The phase diagram in the new coordinates, drawn in Fig
is patently compact. Transformations of the this type ha
been used before in global studies of the RG@17#. Another
possible realization of the phase diagram would be to pro
onto the planel1g51. The new coordinates are given by

r

g
5

r̄ /ḡ

12l̄/ḡ
,

~3.17!
l

g
5

l̄/ḡ

12l̄/ḡ
.

The resulting projective coordinate change converts the
at infinity into the linel51. The critical fixed point is on this
line at r50 but the infinite mass Gaussian point remains
r5`. Hence we can identify the resulting phase diagram
that of the critical model. Similar considerations apply qu
generally to the entire hierarchy.



.

x-

t

is

e
y

of
s
se
s-
s
y
le
ted
d
nned
of
es
he
to
e-
e
e
u-
s

i-
in
e

s
um-
ed

e a
il-
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We see that the new ratios in Eq.~3.17! resemble the
solution of typical one-loop RG equations. This is not ne
essarily accidental. In practice when one goes from bare
renormalized coordinates one defines the new coordinate
terms of normalization conditions@18#, which can be chosen
so that the range of these renormalized coordinates ran
over a finite domain, e.g., from zero to the fixed point valu
of the renormalized coupling. For example, in thef4 model
the relation between bare and renormalized couplings at
loop is given by

lb5
l r

12a~d!l rR
42d

with R the IR cutoff anda(d) a dimension-dependent factor
If terms of the dimensionless couplingsa(d)lR42d we have
precisely Eq.~3.17!. However, at higher order in the loop
expansion such normalization conditions may realize t
projective space of the phase diagram in a more complica
fashion than Eq.~3.17!. Nevertheless, one can think of th
change from ‘‘bare’’ to renormalized coordinates as the tra
sition from affine coordinates to a realization of the proje
tive space.

IV. WILSON’S RG AND ENTROPY GROWTH

Field theoretic renormalization groups that are based
reparametrization of the couplings are a powerful tool for t
study of crossovers and the calculation of crossover scal
functions, as discussed in@18#. In essence they can be
viewed as implementing appropriate projective changes
coordinates implied by the above discussion. We now w
to discuss the relative entropy in a Wilsonian context.
Wilson RG transformation is such that it eliminates degre
of freedom of short wavelength and hence high energ
Typical examples are decimation or block spin transform
tions. It is intuitively clear that their action discards informa
tion on the system and therefore must produce an increas
entropy. Indeed, as remarked by Ma@19# iterating this type
of transformation does not constitute a group but rathe
semigroup, since the process cannot be uniquely reversed
the language of statistical mechanics we can think of it as
irreversible process.

For concreteness we illustrate our approach by a ve
simple example, the Gaussian model with action

I5
1

2 E
0

L

ddpf~p!~p21r !f~2p!, ~4.1!

which yields

W@z#5
1

2 E
0

L ddp

~2p!d
ln
p21r

L2 . ~4.2!

This model has already been considered in Sec. III A b
with a lattice cutoff instead of a momentum cutoff. The re
evant coupling that effects the crossover isz5t5r2r c . The
corresponding relative entropy

S@z#5
1

2 E
0

L ddp

~2p!d S ln p21r

p21r c
2

t

p21r D ~4.3!
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is finite whenL goes to infinity, agreeing with Eq.~3.5!, and
vanishes fort50. The Wilson RG is implemented by letting
L run to lower values. Let us see thatS is monotonic withL.

We have that

]S

]L
5

Ld21

2dpd/2G~d/2! S ln L21r

L21r c
2

t

L21r D . ~4.4!

With the change of variablex5L2, we have to show that the
corresponding function ofx is of the same sign everywhere
Then we want

ln
x1r

x1r c
2
r2r c
x1r

not to change sign. Interestingly, the properties of this e
pression are independent ofx somehow for if one substitutes
in ln r2~r21!/r the valuer5(x1r )/(x1r c) then one re-
covers the entire function. Now it is easy to show tha
ln r>121/r. ~The equality holds forr51—the critical
point.! This proof resembles the classical proofs ofH theo-
rems.

We plot in Fig. 4 the associated relative entropy for th
model as a function ofL to show that it is again a monotonic
function. This behavior is actually closely related to th
monotonicity withr considered before: The relative entrop
as well asW is a function of the ratior /L2, which is pre-
cisely the solution of the RG for this simple model.

There are certain features common to all formulations
Wilsonian RG’s for a generic model. Even if the theory i
simple at the scale of the cutoff, as may happen when we u
a lattice model as our regularized theory, a Wilson RG tran
formation complicates it by introducing new couplings. Thu
the action of Wilson’s RG is defined in what is called theor
space, typically of infinite dimension, comprising all possib
theories generated by its action. In practice, one is interes
in the critical behavior controlled by a given fixed point an
the theory space reduces to the corresponding space spa
by the marginal and relevant operators. Under the action
the RG, the irrelevant coupling constants approach valu
which are functions of the relevant coupling constants. In t
language of differential geometry, the RG flow converges
a manifold parametrized by the relevant couplings. Ther
fore, the information about the original trajectory or th
value of the couplings at the scale of the cutoff is lost. In th
language of FT, we can say that the nonrenormalizable co
plings vanish~or, in general, approach predetermined value!
when the cutoff is removed@20#.

As described above, the action of the Wilson RG is rem
niscent of the course of a typical nonequilibrium process
statistical physics. The initial state may be set up to b
simple but if it is not in equilibrium then it evolves, getting
increasingly complicated until an equilibrium state i
reached, where the system can be described by a small n
ber of thermodynamic variables. This idea can be formulat
as Boltzmann’sH theorem. In the modern version of this
theorem@21# H is a function~al! of the probability distribu-
tion of the system defined asH52Sa of Eq. ~2.1!. It mea-
sures the information available to the system and has to b
minimum at equilibrium. To be precise, the actual probab
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FIG. 4. The Wilsonian relative entropy of the Gaussian model.
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ity distribution is such that it does not contain informatio
other than that implied by the constraints or boundary co
ditions imposed at the outset.

The simplest case of theH theorem is when there is no
constraint whereinH is a minimum for a uniform distribu-
tion. This is sometimes called the principle of equiprobab
ity. From a philosophical standpoint, it is based in the mo
general principle of sufficient reason, introduced by Leibnit
In our context, it can be quoted as stating that if to o
knowledge no difference can be ascribed to two possi
outcomes of an aleatory process, they must be regarde
equally probable. This is the case for an isolated system
statistical mechanics: all the states of a given energy have
same probability~microcanonical distribution!. Another il-
lustrative example is provided by a system thermally coupl
to a heat reservoir at a given temperature where we wan
impose that the average energy takes a particular va
Minimizing H then yields the canonical distribution.

In general, we may impose constraints on a system w
statesXi that the average values of a set of functions of
state,f r(Xi), adopt predetermined values:

^ f r&:5(
i
Pi f r~Xi !5 f̄ r ,

with Pi5P(Xi). The maximum entropy formalism leads t
the probability distribution@22#

Pi5Z21expS 2(
r

l r f r~Xi ! D .
The lr are Lagrange multipliers determined in terms off̄ r
through the constraints. In field theory a state is defined a
field configurationf(x). One can define functionals of the
field Fr [f(x)]. These functionals are usually quasilocal an
are called composite fields. The physical input of a theo
can be given in two ways, either by specifying the micr
scopic couplings or by specifying the expectation values
n
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some composite fields,^Fr [f(x)] &. The maximum entropy
condition provides an expression for the probability distrib
tion,

P@f~x!#5Z21expS 2(
r

l rFr@f~x!# D ,
and therefore for the action,

I5(
r

l rFr ,

namely, a linear combination of relevant fields with couplin
constants to be determined from the specified^Fr&.

The formulation of theH theorem described above is ver
general. The situation that concerns us here is the cross
from the critical behavior in the vicinity of a multicritica
point to another more stable multicritical point under th
action of the RG. As soon as a relevant field takes a non
nishing value, the action of the RG drives the system aw
from the first fixed point towards the second. In our hiera
chical sequence of critical points this was achieved by
couplings being sent to infinity relative to one another in
fashion that descended along this hierarchy. As descri
above, the condition represented by fixing the expectat
value of the relevant field can be understood as imposin
constraint via the introduction of a Lagrange multiplie
which appears as a couplingli in the field theory. As in the
case of the introduction ofb ~inverse temperature!, whenli
is sent to infinity we expect the entropy to decrease and t
our relative entropy should increase. Conversely, releas
the constraint is equivalent to sending the coupling to z
and the relative entropy decreases. In the above descrip
the underlying theory is held fixed and only one parame
varied as one moves through a sequence of ‘‘quasista
states.

In the Wilson RG picture certain expectation values a
held fixed while the microscopic theory is allowed to evolv
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This involves the crossover from cutoff-dependent degr
of freedom to cutoff-independent ones and generically fa
into the nonequilibrium situation described above. In th
process one expects that the entropy will actually increas
the system evolves. This means that our relative entr
should decrease. One can easily see from Fig. 4 in the
ample described at the beginning of this section that this
indeed the case. In terms of renormalized couplings for gi
values of the couplings, we can start with any value ofli and
let the RG act. All the trajectories converge to the critic
manifold whereli is determined by the other couplings
l i(l r). The trajectories approach each other in a sort of
verse chaotic process. In a chaotic process there is great
sitivity to the initial conditions, however, in the RG flow
there is great insensitivity to the initial values of the irre
evant couplings which diminish as the flow progresses an
fact vanish at the end of the flow.

V. CONCLUSIONS

We have established that the field theoretic relative
tropy provides a natural function which ranks the differe
critical points in a model. It grows as one descends the h
archy in the crossovers between scalar field theories co
sponding to different multicritical points. This is a cons
quence of general properties of the entropy and, in particu
of the relative entropy.

We have further established that the phase diagram
the hierarchy of critical points are associated with a nes
sequence of projective spaces. It is convenient to use c
dinates adapted to a particular phase diagram in the hie
chy. Hence a crossover implies a coordinate change.
transition from bare to renormalized coordinates provide
method of compactifying the phase diagram. By chang
from the bare coordinates, in which the phase diagram n
rally ranges over entire hyperplanes to appropriate renorm
ees
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ized ones the phase diagram can be rendered compact.
We discussed the action of the Wilson RG and argued th

the relative entropy increases as more degrees of freedom
integrated out, when the underlying Hamiltonian is hel
fixed. However, when the Hamiltonian is allowed to flow, a
it generically is in a Wilson RG, the resulting flow corre-
sponds to a nonequilibrium process in thermodynamic
Nevertheless, the general formulation of theH theorem pro-
vided by Jaynes allows us to conclude that the entropy i
creases in such a process and that the relative entropy~due to
our choice of signs! decreases. In contrast, the field theoreti
crossover wherein one moves from one point in a phase d
gram to another by varying one of the underlying paramete
~such as temperature! corresponds to a sequence of quas
static states and in the case of our hierarchical sequence
one descends the sequence by sending various paramete
infinity one is gradually placing tighter constraints much a
reducing the temperature does in the canonical ensemb
Thus one expects the entropy should reduce and the relat
entropy increase. This is indeed what we find.

One might wonder as to the connection between our e
tropy function and the ZamolodchikovC function. It is un-
likely that in two dimensions the two are the same. Zamolod
chikov’sC function is built from correlation data and in the
case of a free-field theory it is easy to check that the tw
functions do not coincide.
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