384 research outputs found

    New fitting scheme to obtain effective potential from Car-Parrinello molecular dynamics simulations: Application to silica

    Full text link
    A fitting scheme is proposed to obtain effective potentials from Car-Parrinello molecular dynamics (CPMD) simulations. It is used to parameterize a new pair potential for silica. MD simulations with this new potential are done to determine structural and dynamic properties and to compare these properties to those obtained from CPMD and a MD simulation using the so-called BKS potential. The new potential reproduces accurately the liquid structure generated by the CPMD trajectories, the experimental activation energies for the self-diffusion constants and the experimental density of amorphous silica. Also lattice parameters and elastic constants of alpha-quartz are well-reproduced, showing the transferability of the new potential.Comment: 6 pages, 5 figure

    Do big athletes have big hearts? Impact of extreme anthropometry upon cardiac hypertrophy in professional male athletes.

    Get PDF
    AIM: Differentiating physiological cardiac hypertrophy from pathology is challenging when the athlete presents with extreme anthropometry. While upper normal limits exist for maximal left ventricular (LV) wall thickness (14 mm) and LV internal diameter in diastole (LVIDd, 65 mm), it is unknown if these limits are applicable to athletes with a body surface area (BSA) >2.3 m(2). PURPOSE: To investigate cardiac structure in professional male athletes with a BSA>2.3 m(2), and to assess the validity of established upper normal limits for physiological cardiac hypertrophy. METHODS: 836 asymptomatic athletes without a family history of sudden death underwent ECG and echocardiographic screening. Athletes were grouped according to BSA (Group 1, BSA>2.3 m(2), n=100; Group 2, 2-2.29 m(2), n=244; Group 3, 13 mm, but in combination with an abnormal ECG suspicious of an inherited cardiac disease. CONCLUSION: Regardless of extreme anthropometry, established upper limits for physiological cardiac hypertrophy of 14 mm for maximal wall thickness and 65 mm for LVIDd are clinically appropriate for all athletes. However, the abnormal ECG is key to diagnosis and guides follow-up, particularly when cardiac dimensions are within accepted limits

    Internal frequency conversion extreme ultraviolet interferometer using mutual coherence properties of two high-order-harmonic sources

    Get PDF
    International audienceWe report on an innovative two-dimensional imaging extreme ultraviolet (XUV) interferometer operating at 32 nm based on the mutual coherence of two laser high order harmonics (HOH) sources, separately generated in gas. We give the first evidence that the two mutually coherent HOH sources can be produced in two independent spatially separated gas jets, allowing for probing centimeter-sized objects. A magnification factor of 10 leads to a micron resolution associated with a subpicosecond temporal resolution. Single shot interferograms with a fringe visibility better than 30% are routinely produced. As a test of the XUV interferometer, we measure a maximum electronic density of 3×10^20 cm^−3 1.1 ns after the creation of a plasma on aluminum target

    Bond breaking in vibrationally excited methane on transition metal catalysts

    Get PDF
    The role of vibrational excitation of a single mode in the scattering of methane is studied by wave packet simulations of oriented CH4 and CD4 molecules from a flat surface. All nine internal vibrations are included. In the translational energy range from 32 up to 128 kJ/mol we find that initial vibrational excitations enhance the transfer of translational energy towards vibrational energy and increase the accessibility of the entrance channel for dissociation. Our simulations predict that initial vibrational excitations of the asymmetrical stretch (nu_3) and especially the symmetrical stretch (nu_1) modes will give the highest enhancement of the dissociation probability of methane.Comment: 4 pages REVTeX, 2 figures (eps), to be published in Phys. Rev. B. (See also arXiv:physics.chem-ph/0003031). Journal version at http://publish.aps.org/abstract/PRB/v61/p1565

    Utilisation et conservation des ressources en sol et en eau (Nord Cameroun) : rapport final

    Get PDF
    Après avoir étudié les principaux facteurs régionaux du milieu naturel, une partie de l'étude est consacrée à la caractérisation et à la cartographie des systèmes écologiques de la région de Mouda. Une troisième partie est axée sur les problèmes de fonctionnement des espèces ligneuses et herbacées et fait appel à la connaissance du régime hydrique des sols et à l'organisation des couvertures pédologiques. Une dernière étude, celle du ruissellement et de l'érosion peut être considérée comme la ligne principale du projet

    The influence of gravimetric moisture content on studded shoe–surface interactions in soccer

    Get PDF
    It is desirable for the studs of a soccer shoe to penetrate the sport surface and provide the player with sufficient traction when accelerating. Mechanical tests are often used to measure the traction of shoe–surface combinations. Mechanical testing offers a repeatable measure of shoe–surface traction, eliminating the inherent uncertainties that exist when human participant testing is employed, and are hence used to directly compare the performance of shoe–surface combinations. However, the influence specific surface characteristics has on traction is often overlooked. Examining the influence of surface characteristics on mechanical test results improves the understanding of the traction mechanisms at the shoe–surface interface. This allows footwear developers to make informed decisions on the design of studded outsoles. The aim of this paper is to understand the effect gravimetric moisture content has on the tribological mechanisms at play during stud–surface interaction. This study investigates the relationships between: the gravimetric moisture content of a natural sand-based soccer surface; surface stiffness measured via a bespoke impact test device; and surface traction measured via a bespoke mechanical test device. Regression analysis revealed that surface stiffness decreases linearly with increased gravimetric moisture content (p = 0.04). Traction was found to initially increase and then decrease with gravimetric moisture content. It was observed that: a surface of low moisture content provides low stud penetration and therefore reduced traction; a surface of high moisture content provides high stud penetration but also reduced traction due to a lubricating effect; and surfaces with moisture content in between the two extremes provide increased traction. In this study a standard commercially available stud was used and other studs may provide slightly different results. The results provide insight into the traction mechanisms at the stud–surface interface which are described in the paper. The variation between traction measurements shows the influence gravimetric moisture content will have on player performance. This highlights the requirement to understand surface conditions prior to making comparative shoe–surface traction studies and the importance of using a studded outsole that is appropriate to the surface condition during play

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    Attosecond imaging of molecular electronic wavepackets

    Get PDF
    International audienceA strong laser field may tunnel ionize a molecule from several orbitals simultaneously, forming an attosecond electron–hole wavepacket. Both temporal and spatial information on this wavepacket can be obtained through the coherent soft X-ray emission resulting from the laser-driven recollision of the liberated electron with the core. By characterizing the emission from aligned N 2 molecules, we demonstrate the attosecond contributions of the two highest occupied molecular orbitals. We determine conditions where they are disentangled in the real and imaginary parts of the emission dipole moment. This allows us to carry out a tomographic reconstruction of both orbitals with angstrom spatial resolution. Their coherent superposition provides experimental images of the attosecond wavepacket created in the ionization process. Our results open the prospect of imaging ultrafast intramolecular dynamics combining attosecond and angstrom resolutions
    • …
    corecore